Preprints
https://doi.org/10.5194/egusphere-2023-997
https://doi.org/10.5194/egusphere-2023-997
07 Jun 2023
 | 07 Jun 2023

Hailstorm Events in the Central Andes of Peru: Insights from Historical Data and Radar Microphysics

Jairo Michael Valdivia, David Alejandro Guizado, Elver Villalobos-Puma, José Luis Flores-Rojas, Stephany Magaly Callañaupa, and Yamina Fey Silva-Vidal

Abstract. Hailstorms, while fascinating from a meteorological perspective, pose significant risks to communities, agriculture, and infrastructure. In regions such as the Central Andes of Peru, the characteristics and frequency of these extreme weather events remain largely uncharted. This study fills this gap by investigating the historical frequency and vertical structure of hailstorms in this region. We analyzed historical hailstorm records dating back to 1958 alongside four years of observations (2017–2021) from Parsivel2 disdrometer and a cloud profiler radar MIRA35c. Our findings indicate a trend of decreasing hail frequency (-0.5 events/decade). However, the p-value of 0.07 suggests the need for further investigation, particularly in relation to environmental changes and reporting methods. The results show that hailstorms predominantly occur during the austral summer months, with peak frequency in December, and are most common during the afternoon and early evening hours. The analysis of radar variables such as reflectivity, radial velocity, spectral width, and linear depolarization ratio (LDR) reveals distinct vertical profiles for hail events. Two case studies highlight the diversity in the radar measurements of hailstorms, underscoring the complexity of accurate hail detection. This study suggests the necessity for refining the Parsivel2 algorithm and further understanding its classification of hydrometeors. Additionally, the limitations of conventional radar variables for hail detection are discussed, recommending the use of LDR and Doppler spectrum analysis for future research. Our findings lay the groundwork for the development of more efficient hail detection algorithms and improved understanding of hailstorms in the Central Andes of Peru.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

18 Apr 2024
Hailstorm events in the Central Andes of Peru: insights from historical data and radar microphysics
Jairo M. Valdivia, José Luis Flores-Rojas, Josep J. Prado, David Guizado, Elver Villalobos-Puma, Stephany Callañaupa, and Yamina Silva-Vidal
Atmos. Meas. Tech., 17, 2295–2316, https://doi.org/10.5194/amt-17-2295-2024,https://doi.org/10.5194/amt-17-2295-2024, 2024
Short summary
Jairo Michael Valdivia, David Alejandro Guizado, Elver Villalobos-Puma, José Luis Flores-Rojas, Stephany Magaly Callañaupa, and Yamina Fey Silva-Vidal

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-997', Anonymous Referee #1, 03 Aug 2023
    • AC1: 'Reply on RC1', Jairo Valdivia, 08 Feb 2024
  • RC2: 'Comment on egusphere-2023-997', Anonymous Referee #2, 08 Aug 2023
    • AC2: 'Reply on RC2', Jairo Valdivia, 08 Feb 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-997', Anonymous Referee #1, 03 Aug 2023
    • AC1: 'Reply on RC1', Jairo Valdivia, 08 Feb 2024
  • RC2: 'Comment on egusphere-2023-997', Anonymous Referee #2, 08 Aug 2023
    • AC2: 'Reply on RC2', Jairo Valdivia, 08 Feb 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Jairo Valdivia on behalf of the Authors (08 Feb 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (10 Feb 2024) by Gianfranco Vulpiani
RR by Anonymous Referee #2 (14 Feb 2024)
ED: Publish subject to technical corrections (26 Feb 2024) by Gianfranco Vulpiani
AR by Jairo Valdivia on behalf of the Authors (03 Mar 2024)  Author's response   Manuscript 

Journal article(s) based on this preprint

18 Apr 2024
Hailstorm events in the Central Andes of Peru: insights from historical data and radar microphysics
Jairo M. Valdivia, José Luis Flores-Rojas, Josep J. Prado, David Guizado, Elver Villalobos-Puma, Stephany Callañaupa, and Yamina Silva-Vidal
Atmos. Meas. Tech., 17, 2295–2316, https://doi.org/10.5194/amt-17-2295-2024,https://doi.org/10.5194/amt-17-2295-2024, 2024
Short summary
Jairo Michael Valdivia, David Alejandro Guizado, Elver Villalobos-Puma, José Luis Flores-Rojas, Stephany Magaly Callañaupa, and Yamina Fey Silva-Vidal
Jairo Michael Valdivia, David Alejandro Guizado, Elver Villalobos-Puma, José Luis Flores-Rojas, Stephany Magaly Callañaupa, and Yamina Fey Silva-Vidal

Viewed

Total article views: 510 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
328 159 23 510 20 13
  • HTML: 328
  • PDF: 159
  • XML: 23
  • Total: 510
  • BibTeX: 20
  • EndNote: 13
Views and downloads (calculated since 07 Jun 2023)
Cumulative views and downloads (calculated since 07 Jun 2023)

Viewed (geographical distribution)

Total article views: 499 (including HTML, PDF, and XML) Thereof 499 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 30 Aug 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this study, we explored hailstorms in the central Andes of Peru. We used historical records and radar measurement to understand the frequency, timing, and characteristics of these hail events. Our research found a trend of decreasing hail frequency, probably due to anthropogenic climate change. Understanding these weather patterns is critical for local communities, as it can help improve weather forecasts and manage risks related to these potentially destructive events.