22 May 2023
 | 22 May 2023
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sunphotometer, and in-situ observations over 17 years at UPC Barcelona

Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche

Abstract. Aerosols are one of the most important pollutants in the atmosphere and have been monitored for the past few decades by both remote sensing and in situ observation platforms to assess the effectiveness of government-managed reduction emission policies and assess their impact on the radiative budget of the Earth's atmosphere. In fact, aerosols can directly modulate incoming short-wave solar radiation and outgoing long-wave radiation and indirectly influence cloud formation, lifetime, and precipitation. In this study, we quantitatively evaluated long-term temporal trends and seasonal variability from a climatological point of view of the optical and microphysical properties of atmospheric particulate matter at the Universitat Politècnica de Catalunya, Barcelona, Spain, over the past 17 years, through a synergy of lidar, sunphotometer, and in situ concentration measurements. Interannual temporal changes in aerosol optical and microphysical properties are evaluated through the seasonal Mann-Kendall test. Long-term trends in the optical depth of the recovered aerosol, the Ångström exponent (AE) and the concentrations of PM10, PM2.5 and PM1 reveal that emission reduction policies implemented in the last decades were effective in improving air quality, with consistent drops in PM concentrations and optical depth of aerosols. The seasonal analysis of the 17-year average vertically resolved aerosol profiles obtained from lidar observations shows that during summer the aerosol layer can be found up to an altitude of 5 km, after a sharp decay in the first km. In contrast, during the other seasons, the backscatter profiles fit a pronounced exponential decay well with a well-defined scale height. Long-range transport, especially dust outbreaks from the Sahara Desert, is likely to occur throughout the year. During winter, the dust aerosol layers are floating above the boundary layer, while during the other seasons they can penetrate the layer. This study sheds some light on meteorological processes and conditions that can lead to haze formation and helps decision makers adopt mitigation strategies to preserve large metropolitan areas in the Mediterranean basin.

Simone Lolli et al.

Status: open (until 03 Jul 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Simone Lolli et al.

Simone Lolli et al.


Total article views: 136 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
90 40 6 136 2 3
  • HTML: 90
  • PDF: 40
  • XML: 6
  • Total: 136
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 22 May 2023)
Cumulative views and downloads (calculated since 22 May 2023)

Viewed (geographical distribution)

Total article views: 140 (including HTML, PDF, and XML) Thereof 140 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 04 Jun 2023
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter aerosols decay as an exponential with a scale height of 600 m.