Preprints
https://doi.org/10.5194/egusphere-2023-872
https://doi.org/10.5194/egusphere-2023-872
08 Jun 2023
 | 08 Jun 2023

Assessing the potential for ice flow piracy between Totten and Vanderford glaciers, East Antarctica

Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Ben K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur

Abstract. The largest regional drivers of current surface elevation increases in the Antarctic Ice Sheet are associated with ice flow reconfiguration in previously active ice streams, highlighting the important role of ice dynamics in responding to climate change. Here, we investigate controls on the evolution of the flow configuration of the Vanderford and Totten Glaciers – key outlet glaciers of the Aurora Subglacial Basin, the most rapidly thinning region of the East Antarctic Ice Sheet. We review factors that influence the ice flow in this region, and use an ice sheet model to investigate the sensitivity of the catchment divide location to thinning at Vanderford Glacier associated with ongoing retreat, and thickening at Totten Glacier associated with an intensification of the east-west snowfall gradient. The present-day catchment divide between the Totten and Vanderford Glaciers is not constrained by the geology or topography, but is determined by the large-scale ice sheet geometry and its long-term evolution in response to climate forcing. Furthermore, the catchment divide is subject to migration under relatively small changes in surface elevation, leading to ice flow and basal water piracy from Totten to Vanderford Glacier. Our findings show that ice flow reconfigurations do not only occur in regions of West Antarctica like the Siple Coast, but also in the east, motivating further investigations of past, and potential for future, ice flow reconfigurations around the whole Antarctic coastline. Such modelling of ice flow and basal water piracy may require coupled ice sheet thermomechanical and subglacial hydrology models, constrained by field observations of subglacial conditions. Our results also have implications for ice sheet mass budget studies that integrate over catchments, and the validity of the zero flow assumption when selecting sites for ice core records of past climate.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

01 Nov 2023
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Ben K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-872', Anonymous Referee #1, 21 Jun 2023
  • RC2: 'Comment on egusphere-2023-872', Anonymous Referee #2, 04 Aug 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-872', Anonymous Referee #1, 21 Jun 2023
  • RC2: 'Comment on egusphere-2023-872', Anonymous Referee #2, 04 Aug 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (23 Aug 2023) by Joseph MacGregor
AR by Felicity McCormack on behalf of the Authors (01 Sep 2023)  Author's response   Author's tracked changes 
EF by Anna Mirena Feist-Polner (06 Sep 2023)  Manuscript 
ED: Publish as is (07 Sep 2023) by Joseph MacGregor
AR by Felicity McCormack on behalf of the Authors (11 Sep 2023)  Author's response   Manuscript 

Journal article(s) based on this preprint

01 Nov 2023
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Ben K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Ben K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur

Viewed

Total article views: 490 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
328 141 21 490 13 11
  • HTML: 328
  • PDF: 141
  • XML: 21
  • Total: 490
  • BibTeX: 13
  • EndNote: 11
Views and downloads (calculated since 08 Jun 2023)
Cumulative views and downloads (calculated since 08 Jun 2023)

Viewed (geographical distribution)

Total article views: 487 (including HTML, PDF, and XML) Thereof 487 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur, and if similar diversions could occur elsewhere in Antarctica due to climate change.