Preprints
https://doi.org/10.5194/egusphere-2023-706
https://doi.org/10.5194/egusphere-2023-706
26 Apr 2023
 | 26 Apr 2023
Status: this preprint is open for discussion.

Oceanographic Processes Favoring Deoxygenation Inside Patagonian Fjords

Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme

Abstract. The dissolved oxygen (DO) levels of oceanic-coastal waters has decreased over the last decade owing to the increase in surface water temperature caused by climate change. In addition, biological and human activity in coastal zones, bays, and estuaries has contributed to the acceleration of current deoxygenation. The Patagonian fjord and channel system is one world region where low DO water (LDOW, 30 %–60 % oxygen saturation) and hypoxia conditions (< 30 % oxygen saturation, 2 ml L−1 or 89.2 µmol L−1) is observed. An in-situ data set of hydrographic and biogeochemical parameters (2017 stations), collected from sporadic oceanographic cruises between 1970 and 2021, was used to quantify the mechanism involved in the presence of LDOW and hypoxic conditions in northern Patagonian fjords. Results denoted two main areas with LDOW (e.g., Puyuhuapi Fjord-Jacaf channel, Comau Fjord, and the Reloncaví estuarine system) extending from 25–400 m depth. Simultaneously, hypoxia was recorded in the Puyuhuapi Fjord, Jacaf Channel, and Quitralco Fjord. Quitralco registered the lowest values of DO (9.36 µmol L−1 and 1.6 % oxygen saturation) of the entire Patagonian fjord system. Areas of LDOW and hypoxia coincided with the accumulation of inorganic nutrients. Water mass analysis confirmed the contribution of equatorial subsurface water in the advection of the LDOW to only the Puyuhuapi Fjord and Jacaf Channel. In addition, in Puyuhuapi Fjord, hypoxic conditions occurred when the community respiration rate (6.6 g C m−2d−1) exceeded the gross primary production estimate (1.9 g C m−2d−1) possibly due to the increased consumption of DO during the use of both autochthonous and allochthonous organic matter. Biogeochemical processes and circulation regimens also contribute to deoxygenation and will be part of the discussion of the present research.

Pamela Linford et al.

Status: open (until 19 Jun 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2023-706', Elin Darelius, 02 May 2023 reply
    • AC1: 'Reply on CC1', Iván Pérez-Santos, 02 May 2023 reply

Pamela Linford et al.

Viewed

Total article views: 260 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
198 52 10 260 16 2 1
  • HTML: 198
  • PDF: 52
  • XML: 10
  • Total: 260
  • Supplement: 16
  • BibTeX: 2
  • EndNote: 1
Views and downloads (calculated since 26 Apr 2023)
Cumulative views and downloads (calculated since 26 Apr 2023)

Viewed (geographical distribution)

Total article views: 279 (including HTML, PDF, and XML) Thereof 279 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 04 Jun 2023
Download
Short summary
The Patagonian fjord is one world region where low-oxygen water and hypoxia conditions is observed. An in-situ data set was used to quantify the mechanism involved in the presence of low-oxygen water and hypoxic conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of equatorial subsurface water in the advection of the low-oxygen water and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.