Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-62
https://doi.org/10.5194/egusphere-2023-62
30 Mar 2023
 | 30 Mar 2023

Regime shift of a large river as a response to Holocene climate change depends on land use – a numerical case study from the Chinese Loess Plateau

Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, and Ronald Van Balen

Abstract. The Wei River catchment in the southern part of the Chinese Loess Plateau (CLP), is one of the centers of the agricultural revolution in China. The area has experienced intense land use changes since ~6000 BCE, which makes it an ideal place to study the response of fluvial systems to anthropogenic land cover change (ALCC). We applied a numerical landscape evolution model that combines the Landlab landscape evolution model with an evapotranspiration model to investigate the direct and indirect effects of ALCC on hydrological and morphological processes in the Wei River catchment since the mid-Holocene. The results show that ALCC not only leads to changes in discharge and sediment load in the catchment but also affects their sensitivity to climate change. When the proportion of agricultural land area exceeded 50 % (around 1000 BCE), the sensitivities of discharge and sediment yield to climate change increased abruptly indicating a regime change in the fluvial catchment. It is associated with a large sediment pulse in the lower reaches. The model simulation results also show a link between human settlement, ALCC and floodplain development: Changes in agricultural land use changes lead to downstream sediment accumulation and floodplain development, which in turn leads to further spatial expansion of agriculture and human settlement.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

18 Jan 2024
Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau
Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, and Ronald Van Balen
Earth Surf. Dynam., 12, 163–180, https://doi.org/10.5194/esurf-12-163-2024,https://doi.org/10.5194/esurf-12-163-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The Wei River catchment, one of the centers of the agricultural revolution in China, has...
Share