Preprints
https://doi.org/10.5194/egusphere-2023-472
https://doi.org/10.5194/egusphere-2023-472
17 Apr 2023
 | 17 Apr 2023

Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements

Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen

Abstract. Cloud remains one of the largest uncertainties in weather and climate research due to the lack of fine-resolution observations of cloud vertical structure (CVS) on large scale. In this research, near-global CVS is characterized by high-vertical-resolution twice daily radiosonde observations from 374 stations over land. It is found that the cloud base heights (CBHs) from the radiosondes have a higher correlation coefficient (R = 0.91) with the millimeter wavelength cloud radar than that with the ERA5 reanalysis (R = 0.49). Overall, cloudy skies occur 65.3 % (69.5 %) of the time, of which 55.4 % (53.8 %) are one-layer clouds at 0000 (1200) UTC. Most multi-layer clouds are two-layer clouds, accounting for 62.2 % (61.1 %) among multi-layer clouds for 0000 (1200) UTC. Geographically, one-layer clouds tend to occur over arid regions, whereas two-layer clouds do not show any clear spatial preference. The cloud bases and tops over arid regions are higher compared with humid regions albeit with smaller cloud thickness (CT). Clouds tend to have lower bases and thinner layer thicknesses as the number of cloud layer increases. The global mean CT, CBH, and cloud top height (CTH) are 4.89 ± 1.36 (5.37 ± 1.58), 3.15 ± 1.15 (3.07 ± 1.06), and 8.04 ± 1.60 (8.44 ± 1.52) km above ground level (AGL) at 0000 (1200) UTC, respectively. The occurrence frequency of clouds is bimodal with lower peaks between 0.5 and 3 km AGL and upper peaks between 6 and 10 km AGL. The CBH, CTH and CT undergo almost the same seasonality that their magnitudes are greater in the boreal summer than in the winter. As expected, the occurrence frequencies of clouds exhibit pronounced diurnal cycles in different seasons. In boreal summer, clouds tend to form as sun rises and the occurrence frequencies increase from morning to later afternoon, with the peak in the early afternoon at altitudes 6–12 km; while in boreal winter, clouds have peak occurrence frequencies in the morning. The relations between surface meteorological variables and moisture with CBH are investigated as well, showing that CBH are generally more significantly correlated with 2 m RH (RH2m) and 2 m T (T2m) than with surface pressure and 10 m wind speed. Larger T2m and smaller RH2m always correspond to higher CBH. In most cases CBHs are negatively correlated to soil water content. The near-global CVS obtained from high-vertical-resolution radiosonde in this study can provide key data support for improving the accuracy of cloud radiative forcing simulation in climate models.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

06 Dec 2023
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023,https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The radiative effect of cloud remains one of the largest uncertain factors in climate change,...
Share