28 Mar 2023
 | 28 Mar 2023

Land-cover and management modulation of ecosystem resistance to drought stress

Chenwei Xiao, Sönke Zaehle, Hui Yang, Jean-Pierre Wigneron, and Ana Bastos

Abstract. Drought events are projected to become more severe and frequent across many regions in the future, but their impacts will likely differ among ecosystems depending on their ability to maintain functioning during droughts, i.e., ecosystem resistance. Plant species have diverse strategies to cope with drought. As a result, divergent responses of different vegetation types for similar levels of drought severity have been observed. It remains unclear whether such divergence can be explained by different drought duration, co-occurring compounding effects, e.g., of heat stress or memory effects, management practices, etc.

Here, we provide a global synthesis of vegetation resistance to drought and heat using different proxies for vegetation condition, namely the Vegetation Optical Depth (SMOS L-VOD) data from ESA’s Soil Moisture and Ocean Salinity (SMOS) passive L-band mission and EVI and kNDVI from NASA MODIS. L-VOD has the advantage over more commonly used vegetation indices (such as kNDVI, EVI) in that it provides more information on vegetation structure and biomass and suffers from less saturation over dense forests compared. We apply a linear autoregressive model accounting for drought, temperature and memory effects to characterize ecosystem resistance by their sensitivity to drought duration and temperature anomalies. We analyze how ecosystem resistance varies with land cover across the globe and investigate the modulation effect of forest management and crop irrigation. We compare estimates of ecosystem resistance to drought and heat between L-VOD, kNDVI and EVI.

We find that regions with higher forest fraction show stronger ecosystem resistance to extreme droughts than cropland for all three vegetation proxies. L-VOD indicates that primary forests tend to be more resistant to drought events than secondary forests, but this cannot be detected in EVI and kNDVI. The difference is possibly related to EVI and kNDVI saturation in dense forests. In tropical evergreen broadleaf forests, old-growth trees tend to be more resistant to drought than young trees from L-VOD and kNDVI. Irrigation increases the drought resistance of cropland substantially. Our results suggest that ecosystem resistance can be better monitored using L-VOD in dense forests and highlight the role of forest cover, forest management and irrigation in determining ecosystem resistance to droughts.

Chenwei Xiao et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-304', Anonymous Referee #1, 02 May 2023
  • RC2: 'Comment on egusphere-2023-304', Anonymous Referee #2, 15 May 2023

Chenwei Xiao et al.

Chenwei Xiao et al.


Total article views: 512 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
374 127 11 512 9 7
  • HTML: 374
  • PDF: 127
  • XML: 11
  • Total: 512
  • BibTeX: 9
  • EndNote: 7
Views and downloads (calculated since 28 Mar 2023)
Cumulative views and downloads (calculated since 28 Mar 2023)

Viewed (geographical distribution)

Total article views: 474 (including HTML, PDF, and XML) Thereof 474 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 06 Jun 2023
Short summary
Ecosystem resistance reflects their susceptibility during adverse conditions and can be modulated by land management. We estimate ecosystem resistance to drought and heat globally. We find a higher resistance to drought in forests compared to croplands and an evident loss of resistance to drought when primary forests are converted to secondary forests. Old-growth trees tend to be more resistant than younger trees in some forests and crops benefit from irrigation during drought periods.