Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-295
https://doi.org/10.5194/egusphere-2023-295
03 Mar 2023
 | 03 Mar 2023

Towards a manual-free labelling approach for deep learning-based ice floe instance segmentation in airborne and high-resolution optical satellite images

Qin Zhang and Nick Hughes

Abstract. Floe size distribution (FSD) has become a parameter of great interest in observations of sea ice because of its importance in affecting climate change, marine ecosystems, and human activities in the polar ocean. The sizes of ice floes can range from less than a square metre to hundreds of square kilometres, so the most effective way to monitor FSD in the ice-covered regions is to apply image processing techniques to airborne and satellite remote sensing data. The segmentation of individual ice floes is crucial for obtaining FSD from remotely sensed images, and it is a challenge to separate floes that appear to be connected. Although deep learning (DL) networks have achieved great success in image processing, they still have limitations in this application. A key reason is the lack of sufficient labelled data, which is costly and time-consuming to produce. In order to alleviate this issue, we use classical image processing techniques to achieve a manual-label free ice floe image annotation, which is further used to train DL models for fast and adaptive individual ice floe segmentation, especially for separating visibly connected floes. A post-processing algorithm is also proposed in our work to refine the segmentation. Our approach has been applied to both airborne and high-resolution optical (HRO) satellite images, and successfully derived FSD at local and global scales.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

22 Dec 2023
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023,https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Ice floes image annotation is the key to training deep learning (DL) models to extract...
Share