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Abstract. Floe size distribution (FSD) has become a parameter of great interest in observations of sea ice because of its

importance in affecting climate change, marine ecosystems, and human activities in the polar ocean. A most effective way to

monitor FSD in the ice-covered regions is to apply image processing techniques to airborne and satellite remote sensing data,

where the segmentation of individual ice floes is a challenge in obtaining FSD from remotely sensed images. In this study,

we adopt a deep learning (DL) semantic segmentation network to fast and adaptive implement the task of ice floe instance5

segmentation. In order to alleviate the costly and time-consuming data annotation problem of model training, classical image

processing technique is applied to automatically label ice floes in local-scale Marginal Ice Zone (MIZ). Several State-of-Art

(SoA) semantic segmentation models are then trained on the labelled MIZ dataset and further applied to additional large-scale

optical Sentinel-2 images to evaluate their performance in floe instance segmentation and to determine the best model. A post-

processing algorithm is also proposed in our work to refine the segmentation. Our approach has been applied to both airborne10

and high-resolution optical (HRO) satellite images to derive acceptable FSDs at local and global scales.

1 Introduction

Determining the characteristics of sea ice is critical to the understanding of physical processes in the polar regions and climate

change globally (Notz and SIMIP Community, 2020). Although sea ice concentration (SIC) and sea ice thickness (SIT) are

widely used parameters, the size and shape distributions of individual pieces of sea ice, i.e., floes, are also important. They15

can help determine SIC (Nose et al., 2020), the rate of sea ice melt (Horvat and Tziperman, 2018), ocean wave propagation

in the ice pack (Squire et al., 1995), and the development and maintenance of the upper ocean mixed layer (Manucharyan

and Thompson, 2017). Floe size is critical for determining ice floe mass, as within an ice field it varies more than SIT. Floes

also play an important role in human activities, such as maritime navigation and offshore operations in ice-covered regions

(Marchenko, 2012; Mironov, 2012). Image data from various sources are rich in environmental information (e.g., sea ice types,20

SIC), and from which many floe parameters (e.g., floe area, parameter, shape property) can be extracted to determine a floe

size distribution (FSD) (Rothrock and Thorndike, 1984).
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The extraction of individual ice floes is crucial for determining FSD and other floe characteristics from images, and the sep-

aration of connected floes has always been a challenge. The existing methods for extracting individual ice floes and estimating

FSD from images are mainly based on classical image processing methods. A simple approach is to define an ice-water seg-25

mentation threshold to extract floes and then apply manual edge corrections when the threshold performs poorly (Toyota et al.,

2006, 2011, 2016). Watershed transform has been adopted to detach connected floes, but excessive over-segmentation is an

ineluctable problem when using this method (Blunt et al., 2012; Zhang et al., 2013). Morphological operations can be used with

different improvements to determine individual ice floes, but the methods operate directly on binarized floe images and thus

cannot separate out the floes that have no or few gaps with any surrounding floes after binarization (Banfield, 1991; Banfield30

and Raftery, 1992; Soh et al., 1998; Steer et al., 2008; Wang et al., 2016). The gradient vector flow (GVF) snake was used by

(Zhang and Skjetne, 2015) for detecting weak floe boundaries and has achieved excellent results in segmenting individual floes

from MIZ images, in which a large number of floes are connected to each other. However, this method is not time-effective and

may not work well with floe images other than MIZ images, especially the larger scale images such as satellite imagery (Zhang,

2020; Zhang and Skjetne, 2018). These classical image processing based methods suffer from segmentation problems, and are35

more or less limited by the need for manual intervention in processing individual images. Due to the vast volumes of image

data now being collected by Earth Observation programmes such as Copernicus, so-called Big Data, manual intervention is

undesirable due to its inefficiency. Autonomous, trustworthy, and time-efficient methods thus need to be developed.

Deep learning (DL) methods have nowadays proven to deliver superior accuracy in a wide range of image processing

applications. Pixel-based DL methods are able to map complex features at the pixel level from an image in an automated40

process, and they have also been applied in extracting all ice pixels from images consisting of a mixture of sea ice and water

(Khaleghian et al., 2021; Gonçalves and Lynch, 2021; Zhang et al., 2021). However, most of these studies grouped the pixels

belonging to different ice regions or floes into the same class (i.e. the class of ice), and did not contribute to the identification of

individual ice floes, which is an instance segmentation problem that requires multiple ice floes to be treated as distinct individual

instances. Few studies have employed DL methods to identify individual ice floes. A semantic segmentation model, ResUNet,45

was used in (Nagi et al., 2021) to segment individual floes that were far apart from each other, and then used ConvCRF to

refine the segmentation results. This method, however, simply divided an image into two classes of ice and background, and

was unable to separate connected floes. (Cai et al., accepted) has adopted and compared two state-of-art (SoA) DL instance

segmentation models, Mask R-CNN (He et al., 2017) and YOLACT (Bolya et al., 2019), for identifying individual model floes

in an indoor ice tank. Because these models rely heavily on their own object detectors to produce instance segmentation results,50

neither model could fully detect every floe appeared in the image, resulting in the loss of floes, and the segmentation accuracy

was usually not high.

Training a DL model requires a sufficiently annotated dataset. However, data labelling usually involves a lot of manual

work and is expensive and time-consuming, which limits the application of DL methods to extracting individual ice floes (Jing

and Tian, 2021; Zhou, 2017; Chai et al., 2020). In order to minimise the manual labelling effort required from the domain55

experts, we use a classical image processing method to enable a manual-label free annotation of the dataset and automatically

generate pseudo ground truth. We then apply DL semantic segmentation method, which assigns every pixel in an image to
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defined classes, to address the floe instance segmentation problem, and propose a post-processing algorithm to refine the

model outputs. The application of our approach to derive FSDs from local-scale airborne imagery and global-scale satellite

imagery demonstrates the effectiveness of our approach.60

2 Datasets and computational resources

2.1 Image data

2.1.1 Local-scale airborne data

The local-scale image data are the only data we used to train DL models, and they are marginal ice zone (MIZ) images mainly

from the Oden Arctic Technology Research Cruise 2015 (OATRC’15) expedition. OATRC’15 was conducted by the Norwe-65

gian University of Science and Technology (NTNU) in collaboration with the Swedish Polar Research Secretariat (SPRS) in

September 2015 (Lubbad et al., 2018). Two icebreakers, Oden and Frej, were employed during this research cruise into the

Arctic Ocean north of Svalbard. Among many research activities, a helicopter flight mission was accomplished when Oden

was transiting in the MIZ during which an optical camera was mounted on the helicopter, as seen in Fig. 1. This enabled the

acquisition of 254 high resolution images of sea ice, of which 52 images covering MIZ regions and less blurred by water vapor70

were selected for this study. The resolution of the collected sea ice images depends on helicopter’s flight altitude, and was

estimated as 0.22 m on average. The specifications of the camera can be found in Table 1 (Zhang and Skjetne, 2018).

(a) Helicopter camera.

Svalbard

(b) Helicopter’s flying route, starting from red and gradually changing into green. Source:

(Lubbad et al., 2018).

Figure 1. Helicopter flight mission. (a) Helicopter showing location of the camera system; (b) Flight route.

In addition to the MIZ images from OATRC’15, we also used another three airborne images obtained from the remote

sensing UAV (unmanned aerial vehicle) mission over the MIZ performed by the Northern Research Institute (NORUT) at

Ny-Ålesund, Svalbard (78◦55′N 11◦56′E), in early May, 2011. The details of this UAV mission and the specifications of the75
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Table 1. Visible spectrum camera specifications.

Lens type Fujion 35mm

Focal length 28.5 mm

Dimensions 5568 × 3132

Sampling frequency 0.1 Hz

collected image data can be found in (Zhang et al., 2012). For convenience, in this article, we refer to the local-scale airborne

MIZ images as MIZ images.

2.1.2 Global-scale satellite data

The global-scale high-resolution optical (HRO) satellite imagery data are additional test data only used to investigate the

generalization ability of the DL models which were trained only on local-scale MIZ images. The S2 images are freely-available80

from the Sentinel-2 mission of the European Copernicus programme (Cop). The two Sentinel-2 satellites carry a multispectral

instrument (MSI) that provides images consisting of 13 spectral bands: four bands at 10 m resolution covering visible and near-

infrared (VNIR) frequencies, six at 20 m covering red edge and short-wave infrared (SWIR), and three at 60 m for atmospheric

correction (Drusch et al., 2012). Figure 2 displays the locations of the four S2 Level-1 images that were acquired over the

Belgica Bank area offshore of north-east Greenland during May and June 2021, and in this article we refer to them as S2-1,85

S2-2, S2-3, and S2-4. Table 2 lists and identifies the filenames used, e.g., the filename of S2-1 image identifies a Level-1C

product acquired by Sentinel-2A on the 27th of May, 2021 at 14:49:21 PM that was acquired over tile 28XEN during relative

orbit 082, and processed with the Payload Data Ground Segment (PDGS) processing baseline 03.00. More details for each S2

image can be found by searching for their Product IDs on the Copernicus Open Access Hub (https://sentinels.copernicus.eu/

web/sentinel/user-guides/sentinel-2-msi/naming-convention).90

Further examples as NetCDF files containing both gridded and vector polygon data can be downloaded from https://thredds.

met.no/thredds/catalog/digitalseaice/catalog.html, with a GeoJSON catalogue for these at https://bit.ly/s2floemaps.

Table 2. Sentinel-2 image data.

Item Product ID Latitude Longitude Tile size

S2-1 S2A_MSIL1C_20210527T144921_N0300_R082_T28XEN_20210527T165730 78.78 -12.50 110×110 km2

S2-2 S2B_MSIL1C_20210528T150759_N0300_R025_T29XMJ_20210528T171359 79.67 -11.18 110×110 km2

S2-3 S2A_MSIL1C_20210617T141951_N0300_R096_T28XEL_20210617T162322 77.00 -12.89 110×110 km2

S2-4 S2B_MSIL1C_20210620T133729_N0300_R067_T29XNG_20210620T154321 77.87 -6.63 110×110 km2

4
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Figure 2. Location map of the four Sentinel-2 image data: S2-1 in red, S2-2 in yellow, S2-3 in blue, and S2-4 in green. Details for each S2

image can be found on the Copernicus Open Access Hub by searching for their Product IDs listed in Table 2.

2.2 Software and hardware

The platform for implementing DL models was TensorFlow 2.4.0, and the training was performed on an NVIDIA Tesla P100-

PCIE GPU with 12 GB of memory. All the testing and performance comparisons of DL models, as well as the classical image95

processing method, for the sake of fairness, were conducted using Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz, 16 GB

RAM, Integrated Graphics Card, as the GPU cannot significantly reduce the execution time of the classical image processing

method.

3 Methodology

This section introduces methods and DL model we will used in ice floe segmentation. The detailed implementation process of100

these methods will be introduced in Section 4.

3.1 Training data preparation

By studying various floe images, we find that the intensities of the boundary pixels between two adjacent floes are usually

significant higher than those of water pixels, and close to ice pixel intensities (Toyota et al., 2006; Denton and Timmermans,

2022). If we consider only two classes in floe segmentation, i.e., ice floe and water, and categorize floe boundary pixels into105

the class of water, the gap between the two classes will be narrow, and the boundary pixels between two adjacent floes will

most likely be classified as ice pixels, with the result that the adjacent floes connect to each other. Therefore, we add an

additional class of floe boundary, turning the two-class segmentation task into a three-class segmentation problem. In this way,

the discriminative ability of the network for segmenting individual ice floes will be improved, not only by broadening the gap
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between the classes of ice and water but also through the learning of shape and spatial relationships between ice floes and their110

boundaries.

We also notice that the number of pixels belonging to the floe boundary class might be relatively small, comparing with those

belonging to the other two classes. Floe boundary is a hard-to-train class with pixel intensities similar to those of ice floes. It is

therefore necessary to increase the proportion of floe boundary in the training dataset to balance the classes. MIZ images often

contain large numbers of small ice floes crowded together, and the proportions of floe boundary pixels in the MIZ images are115

usually higher than that of other floe images. Using MIZ images as the training dataset is therefore beneficial to reduce the

risk of class imbalance in the dataset. Due to this reason, we use MIZ images and their annotations to train DL models for floe

instance segmentation.

3.1.1 Automated data annotation

Manually labeling ice floes in MIZ images is labour intensive, and a large effort is required to achieve automatic labelling.120

Because the GVF snake-based method has a superior ability of segmenting large number of small and crowded floes in MIZ

images, it is thus utilised as an “annotation tool” to help automatically label individual ice floes in MIZ images. This method

first uses the distance map and regional maxima of the binarised MIZ image to automatically locate the initial contours, each

of which is a starting set of snake points for the evolutions. Then the GVF snake is run on each initial contour to find floe

boundaries. Finally, superimposing all the detected boundaries over the binarised MIZ image, the connected floes are separated125

and individual floes are determined (Zhang, 2020; Zhang and Skjetne, 2018).

The output of the GVF snake-based method is a binary image with two classes: ice floe and water, as seen in Fig. 3(b).

Additional floe boundary class is added by tracing the contours of each segmented ice floes. To enhance floe boundaries and

mitigate the imbalance of classes that may still be latent in the training dataset, we widen floe boundaries from one pixel to two

pixels (i.e., inner floe boundary which consists of pixels from the floe itself, and outer floe boundary which mainly consists of130

pixels from ambiguous edges between the floe and another floe or water) in the labels. And with the help of the double thick

boundary labels, the network would be able to capture floe boundaries more accurately.

GVF snake-
based method

(a) Ice floe image (b) Floe segmentation (c) 3-class label annotation

Floe boundary
labelling

Figure 3. Ice floe image annotation. (a) A small MIZ image sample; (b) Floe segmentation of (a) by the GVF-snake based method; (c)

3-class label annotation, produced by adding an additional floe boundary class to (b). Labels: white – ice floe; red – floe boundaries; black –

water. Note, the labels annotated by the GVF snake-based method are not always accurate, as seen the highlighted yellow regions in (b) and

(c) for instance. Our approach can thus be thought of as self-supervised and weakly-supervised learning that the model will learn from the

inaccurate labels created from the data itself without human annotation.
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3.1.2 Multi-scale division

Our MIZ images are of different sizes. Although the fully convolutional network (FCN) architectures (Long et al., 2015) can

be designed for variable-size inputs (Long et al., 2015), in order to reduce memory usage and improve training efficiency, it

is more practical to fix the input size of a network to a small value during the training process. Therefore, each of the images,135

together with the corresponding annotation, is divided into several equal-sized patches that are as close as possible to the fixed

input size of the network for training.

Due to the nature of the MIZ in this example, most floes in our training image data have similar sizes and shapes. But in

more general cases, floe sizes and shapes can vary greatly in an image. Small floes are typically more challenging to segment,

not only because of low resolution and small size, but also due to the lack of representation of small objects in training data140

(Kisantal et al., 2019). To overcome this issue, we select a few floe images and divide each of these images (and also their

annotations) randomly into, taking Fig. 4 as an example, 1×1, 1×2, 2×3, 3×4, 4×5 sub-images. Note that some sub-images

(e.g, 4× 5 sub-images in Fig. 4) may duplicate with the patches. These duplicate sub-images should be removed so that the

remaining sub-images, which we refer them as “multi-scale sub-images”, and patches appear only once in the dataset, thus

preventing data leakage during the training. After automatically removing the sub-images that are duplicated with the patches145

by, e.g., using a naming convention to overwrite the duplicated ones, the resulted multi-scale sub-images together with the

patches constitute our dataset, and they will further be rescaled into the small size required by the network for training. In this

way, an ice floe can be resized into several smaller ones of different scales. Thus, our multi-scale division is a data augmentation

that expands the amount of the training dataset and increases the diversity of floe size/shape and the appearance rate of small

floes in the training dataset, and thereby helping the network improve the segmentation of small floes.150

3.2 Deep learning model

The extraction of individual ice floes is an instance segmentation problem that treats multiple floes as distinct individual

instances. SoA DL instance segmentation models, such as Mask R-CNN (He et al., 2017) and YOLACT (Bolya et al., 2019),

are often the intuitive choices to solve floe instance segmentation problem. Unfortunately, these instance segmentation models

are unable to completely detect all the floes in regions of high SIC where a large number of variable-sized floes touch each other155

(Cai et al., accepted). This results in the loss of floes and ice pixels that reduces the accuracy of FSD estimation and further

leads to underestimation of SIC. An additional method or model is thus needed to determine all sea ice pixels. The encoder-

decoder network architectures (Badrinarayanan et al., 2017; Ronneberger et al., 2015), which are designed for semantic image

segmentation tasks, assign every pixel in an image to defined classes. They are able to extract all sea ice pixels from an image

consisting of a mixture of sea ice and water, and have the potential to detect individual floes by identifying floe boundaries.160

Therefore, a semantic segmentation approach is used in our work to address the floe instance segmentation problem.

U-Net and its developments are popular DL models for semantic segmentation (Ronneberger et al., 2015; Kamrul Hasan

and Linte, 2019; Zhou et al., 2018). They have achieved great success in many image segmentation applications, even with a
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Figure 4. Flowchart of the patch and multi-scale divisions. An ice floe image is divided into (a) equal-sized patches with sizes close to

network’s fixed input size for training, and (b) random sub-images (1×1, 1×2, 2×3, 3×4, 4×5, · · · sub-images in this example), and the

sub-images that duplicate with the patches are removed. We refer to the remaining sub-images as multi-scale sub-images.

limited training dataset (Kamrul Hasan and Linte, 2019; Zhang et al., 2018; Jeppesen et al., 2019). The basic architecture of

U-Net family is a symmetric FCN encoder-decoder structure with additional skip connections. The encoder network consists of165

convolution blocks followed by a max-pooling downsampling to encode the input image into feature maps at multiple different

levels, while the decoder network consists of upsampling followed by regular convolution operations to restore the spatial

resolution of the feature maps. The skip connections use concatenation to simply combine the low-level features, extracted

from the encoder, with the high-level features, obtained from the decoder, to recover the spatial information lost during the

max-pooling operation. However, no solid guarantee that the same-scale feature maps from the encoder and decoder networks170

are the best match for fusion.

Unlike the skip connections designed in the original U-Net architecture, U-Net++ (Zhou et al., 2018), which is a variant

of original U-Net, uses a series of nested dense convolutional blocks (Huang et al., 2017) on the skip pathways to bridge the

semantic gap between encoder and decoder feature maps prior to fusion, and improves gradient flow in the network. Moreover,

U-Net++ has deep supervision that allows us using only one loss layer to determine the optimal depth of the network (Zhou175

et al., 2018, 2020).

We have conducted experiments to compare the performance of U-Net++ with other SoA models such as the family of FCNs

(Long et al., 2015), SegNet (Badrinarayanan et al., 2017), U-Net, etc. in floe instance segmentation. The architecture of each

model and comparisons between them can be found in Section 5.1. Our experimental results show that U-Net++ performs best

in extracting individual ice floes even if a large amount of variable-sized floes touch each other. Therefore, we employ U-Net++180

in our work for the instance segmentation of ice floes.
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It should be note that U-Net++ model is our suggestion for ice floe instance segmentation after studying different SoA DL

models on the currently limited training datasets. As training datasets become richer, more robust floe segmentation models

will be developed.

3.3 Post-processing185

Inevitably, a few connected floes may still not be separated and some pixels inside a segmented floe may also be misclassified

as edge or water by the DL model, as seen in Fig. 6(b). A post-processing is thus necessary to refine the segmentation made by

DL models.

To find potential connected floes/regions, we first calculate the solidities of each segmented floe/region, given by:

Solidity(f) =
Area[Filled(f)]

Area[ConvexHull(f)]
(1)190

where f is a segmented ice floe/region, Filled(f) is the region of f with all the holes filled in, ConvexHull(f) is the smallest

convex polygon that encloses the region of f , and Area[·] denotes the area (number of pixels) of the region. The solidity of

any segmented floe/region is the ratio of its hole-filled area to its convex hull’s area, it reflects the convexity of each segmented

floe/region.

An under-segmented region normally has low convexity. That means, a segmented region with low solidity (i.e., the solidity195

is less than a cut-off threshold Ts) and large area (i.e., the area is lager than a cut-off threshold Ta) is more likely to be

composed of connected ice floes. Therefore, we perform the morphological opening (which removes small protrusions and

breaks the tenuous connections between objects) to those potential under-segmented regions to detach the floes that are possibly

connected. After that, we perform the morphological closing (which fills long thin channels in the interior or at the boundaries

of the object) and hole filling to large-area ice floes (i.e., the floes whose area is lager than a threshold T
′

a), one by one, in order200

of increasing size.

The procedure of our post-processing algorithm is illustrated in Fig. 5, and Fig. 6 presents the post-processing result of an

ice floe image segmentation. Note, a small amount of pixels may be turned to other classes after post-processing. In particular,

some isolated ice pixels or tiny floes may vanish during the opening or closing process. To avoid the loss of ice pixels and the

underestimation of SIC, the vanished ice pixels are recorded and labelled as boundary pixels in our post-processing algorithm.205

4 Implementation details

The implementation of the our proposed approach is divided into two parts: DL model training and ice floe image processing

using the trained DL model, in which the methods introduced in section 3 will be applied.

4.1 DL model training

Our MIZ images were fed into the GVF snake-based method to “label” individual ice floes and floe boundaries. The entire210

image processing was fully automatic, using the default parameters in the GVF snake-based method (Zhang, 2018) without
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(a) Prediction of ice floes

(b) Potential under-
segmented floes

(e) Final post-processing result

(d) Large-area floes

Calculte soli-
dity of each 
segmented floe

Morphological
opening

Yes

Solidity < Ts 
& area > Ta ? 

No (c) Under-segmented 
floe separation

Yes

No
Morphological
closing & 
hole filling

Floe area
 > Ta' ? 

Figure 5. Flowchart of the post-processing procedure. (a) Preliminary floe segmentation made by U-Net++; (b) Potential under-segmented

ice floes (highlighted in white), obtained by finding the floes whose solidities are lower than a cut-off threshold Ts (which is 0.85 in our

case) and areas are larger than a cut-off threshold Ta; (c) Floe segmentation after performing morphological opening on the floes found in

(b), the under-segmented floes are detached; (d) Finding out the floes in (c) whose areas are larger than a threshold T
′
a (highlighted in white);

(e) Final post-processing result by performing morphological closing and hole filling to the ice floes in (d) one by one in order of increasing

size. The segmented floes/regions in (a), (c), and (d) are labelled in different colours. Note that, only ice floes, without any floe boundaries,

are presented in this figure.

(a) A small subset of S2-1 im-

age.

(b) Preliminary segmentation of

(a) by U-Net++.

(c) Post-processing of (b).

Figure 6. A post-processing example. (a) A small subset of S2-1 image; (b) Preliminary segmentation of (a) by U-Net++, some floes are still

touching, and some pixel insides a floe are misclassified as edge pixels; (c) Final segmentation after performing post-processing to (b). The

detected individual ice floes are labelled in different colours, and the detected floe edges are plot in dark red.
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any manual tuning. This means that our approach can be thought of as a self-supervised learning, with the supervisory labels

being created from the data itself without human annotation (Jing and Tian, 2021).

The processed image pairs, i.e. MIZ images and their annotations, were then divided into the patches with the sizes close

to the fixed input size of the network for training, which was 256×256 pixels in our case, a restriction of the amount of MIZ215

images and GPU memory. Some patch pairs may have severely wrong annotations1 and it is necessary to remove them from

the patch dataset to minimise mislabelling in the training dataset. Owing to the characteristics of MIZ ice floes (i.e., the shapes

and sizes of MIZ floes do not vary much), this can be done automatically by adopting the criteria for finding under-segmented

floes introduced in the post-processing step. That is, if the ratio of the total area of the labelled floes that do not satisfy the

criteria to the total area of all the labelled floes is larger than a threshold, the annotated pair will be removed. We also chose220

a few well processed image pairs and divided each of them into several multi-scale sub-images, which were the sub-images

that did not duplicate with the patches. These patches (333 pairs) and multi-scale sub-images (46 pairs), a total of 379 pairs of

images and the corresponding annotations, constituted the final dataset we needed for training a model. And the proportions of

each class in the dataset are 41.63% ice floe, 39.83% floe boundaries and 18.54% water.

After randomly splitting the dataset into training (290 pairs), validation (52 pairs), and test (37 pairs) sets, the training and225

validation dataset were further resized to match the training input size of the network. To increase the amount of training data,

data augmentation, including Gaussian blur, rotate, shift, flip, zoom, etc. was also employed in the training. The procedure of

our training process is illustrated in Fig. 7.

Patch 

division

Multi-

scale

division

Augmen-

tation

Resize

GVF snake-based 
annotation

Ice floe images

Annotations

Input images

''Ground truth''

DL semantic 
segmentation
model

Predictions

Loss

Optimization &

weight update

Figure 7. FLowchart of the overall training procedure. Labels in the annotation: white – ice floe; red – floe boundaries; black – water.

It should be noted that, our dataset still has some minor errors, i.e. some labelled ice floes are under- or over-segmented

(e.g., the highligted yellow regions in Fig. 3). These errors may reduce the robustness of the trained model. However, we kept230

1These severely misannotations by the GVF snake-based method occurred in non-MIZ regions and regions blurred by water vapor in the images. This can

be avoided if all the training images are clear and have no non-MIZ regions.
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the minor erroneous segmentations in our training dataset, leaving the issue to be further overcome by the DL network, as DL

network learns the most significant features from the dataset, being able to identify small errors as outliers during the training.

Therefore, our approach can also be thought of as weakly-supervised learning that the model will learn from the inaccurate

labels (Zhou, 2017). But for evaluating and comparing different DL models, we have manually corrected the errors in our test

dataset.235

The DL model was trained with a batch size of 4 and Adam optimizer was applied in the training. The learning rate was

set to 10−4 for the first 50 epochs and then to 10−5 for the next 30 epochs. Note that the proportion of floe boundaries in

our dataset is close to that of ice floes, while the proportion of water is a bit smaller than that of the other two classes. The

smaller proportion of water has little effect on the model learning to classify water pixels, since water is an easy-to-train class

with significantly lower pixel intensities than the other two classes. Therefore, there is no need to modify the loss function and240

categorical cross-entropy was chosen as the loss in the training.

4.2 Ice floe image processing

Due to the limitation of computer performance, a large image was first divided into several small tiles. Each tile was then

fed to the trained model to obtain its predicted mask. Thereafter, all the predicted masks were stitched together to restore the

spatial pattern, resulting in the preliminary floe instance segmentation. After post-processing the preliminary segmentation, we245

obtained the final floe instance segmentation. Figure 8 illustrates the workflow of the inference using the S2-1 image as an

example.

5 Method comparisons

This section presents the performance evaluation and comparison using different methods/hypotheses on local airborne and

global satellite sea ice floe images.250

5.1 DL model evaluation

We have conducted experiments to compare the performance of different SoA semantic segmentation architectures: the family

of FCNs (i.e., FCN-8s, FCN-16s, FCN-32s) (Long et al., 2015), SegNet (Badrinarayanan et al., 2017), U-Net (Ronneberger

et al., 2015), residual U-Net (ResUNet) (Zhang et al., 2018), U-Net++, and residual U-Net++ (ResUNet++) (Jha et al., 2019),

where the optimal depths of U-Net, ResUNet, U-Net++, and ResUNet++ are 5, 5, 5, and 6, respectively. Diagrams for each DL255

model can be found in Fig. 9
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Ice floe image

Tiles

DL semantic
segmentation
model

Predictions

Tile stitching 
(preliminary segmentation)

Post- 
processing

Final instance
segmentation

Figure 8. Flowchart of the inference procedure for large-scale ice floe image segmentation.

Figure 9. Diagrams of DL semantic segmentation models.
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5.1.1 Evaluation metrics

To assess DL model performance, we use accuracy, F1-score (Goutte and Gaussier, 2005), and mean intersection of union

mIoU (Long et al., 2015) as evaluation metrics:

Accuracy =
TP +TN

TP +TN +FP +FN
(2)260

F1-score =
2TP

2TP +FP +FN
(3)

mIoU =
1

C

∑
c

IoUc =
1

C

∑
c

TPc

TPc +FPc +FNc
(4)

where TP , TN , FP , and FN are pixel-wise true positive, true negative, false positive, and false negative respectively, C is265

the number of classes, and IoUc is the intersection of union for class c.

Table 3 lists the evaluation and comparison results based on our test dataset. We can see that the performance indicators of

U-Net, ResUNet, U-Net++ and ResUNet++ are similar to each other and are significantly higher than those of FCN family

models and SegNet, while the U-Net++ model gives a slight advantage with the highest scores on our test dataset.

Table 3. Model performance indicators.

Methods Accuracy (%) F1-score (%) mIoU (%)

FCN-32s 59.52 41.05 27.96

FCN-16s 64.92 43.04 36.33

FCN-8s 72.66 47.00 46.21

SegNet 69.72 44.34 43.15

U-Net 83.21 49.78 62.24

ResUNet 83.57 49.74 62.92

U-Net++ 83.65 49.80 63.35

ResUNet++ 82.81 49.74 61.21

5.1.2 Segmentation visualisation270

To further investigate the effectiveness of the models, Figures 10 and 11 visualise the floe instance segmentation results on local-

scale airborne and global-scale satellite images by U-net, ResUNet, U-net++, and ResUNet++ respectively for comparison.

From these figures, we find that, U-Net is more sensitive to the rapid change in image brightness between neighbouring

pixels and detects more noise than others. Although the noise detected by U-Net may help for reducing under-segmentation, it
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increases the risk of over-segmentation which is difficult to alleviate with post-processing, as seen in Fig. 11(c). On the other275

hand, ResUNet and ResUNet++ produce less over-segmentation, at the expensive of under-segmentation which results in floes

that may not always be effectively detached.

(a) An airborne MIZ image sample. (b) Ground truth.

(c) U-Net. (d) U-Net & post-processing. (e) ResUNet. (f) ResUNet & post-processing.

(g) U-Net++. (h) U-Net++ & post-processing. (i) ResUNet++. (j) ResUNet++ & post-processing.

Figure 10. Visualisation of MIZ image segmentation results by different models. (a) An airborne MIZ image sample; (b) Ground truth,

produced by the GVF snake-based method with manual correction; (c) Segmentation by U-Net; (d) Post-processing of (c); (e) Segmentation

by ResUNet; (f) Post-processing of (e); (g) Segmentation by U-Net++; (h) Post-processing of (g); (i) Segmentation by ResUNet++; (j) Post-

processing of (i). The detected individual ice floes are labelled in different colours, and the detected floe edges are plot in dark red. Blue

rectangle – over-segmentation region; green rectangle – under-segmentation region.
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(a) S2-2 image. (b) U-Net. (c) U-Net & post-processing.

(d) ResUNet. (e) ResUNet & post-processing. (f) U-Net++.

(g) U-Net++ & post-processing. (h) ResUNet++. (i) ResUNet++ & post-processing.

Figure 11. Visualisation of S2-2 image segmentation results by different models. (a) S2-2 image; (b) Segmentation by U-Net; (c) Post-

processing of (b); (d) Segmentation by ResUNet; (e) Post-processing of (d); (f) Segmentation by U-Net++; (g) Post-processing of (f); (h)

Segmentation by ResUNet++; (i) Post-processing of (h). The detected individual ice floes are labelled in different colours, and the detected

floe edges are plot in dark red. Blue rectangle – over-segmentation region; green rectangle – under-segmentation region.
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5.1.3 Segmentation time

Table 4 lists the average segmentation times of different DL models on our test set. It typically needs more segmentation time as

model complexity increases. FCN-8s and FCN-16s took the least segmentation time, while ResUNet, U-Net++ and ResUNet++280

needed similar segmentation time that were only 0.4-2 seconds more than other models. The differences in segmentation time

among different DL models were less than an order of magnitude, and could be negligible considering the accuracy differences

of the models.

Table 4. Segmentation time by using CPU specified in Section 2.2.

Methods Without post-processing With post-processing

FCN-32s 0.335 s 0.389 s

FCN-16s 0.177 s 0.316 s

FCN-8s 0.124 s 0.500 s

SegNet 0.957 s 1.359 s

U-Net 1.220 s 1.818 s

ResUNet 1.678 s 2.330 s

U-Net++ 1.674 s 2.328 s

ResUNet++ 1.682 s 2.346 s

As a compromise, we conclude that the U-Net++ is the most efficient among the other SoA models and is chosen as the DL

model for floe instance segmentation.285

5.2 1-pixel wide floe boundary labels versus 2-pixel wide floe boundary labels

We have widened floe boundaries in labels from one to two pixels to increase the proportion of the hard-to-train floe boundary

class in the training dataset, as seen in Table 5. To prove that boundary widening can improve model performance, we also

trained the U-Net++ model on a dataset with 1-pixel wide ice floe boundary labels and compare it with the model trained on

the 2-pixel wide floe boundary labels. Since the two datasets have different criteria for “ground truth”, the evaluation metrics290

introduced in Section 5.1.1 are not suitable for comparing the performance of the two models. Therefore, we compare the two

models only through visual comparison.

Figure 12 shows the segmentation results of S2-2 image by the U-Net++ model trained on 1-pixel wide floe boundary labels,

in which many floe boundary pixels were incorrectly identified as ice floe pixels. Comparing it with Figures A11(f) and A11(g),

it is easy to see that the model trained on 1-pixel wide floe boundary labels is more likely to lead to under-segmentation of ice295

floes, demonstrating that widening the ice floe boundary in labels can effectively improve model performance.
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Table 5. Proportions of each class in the dataset.

Ice floe Floe boundary Water

Labels with 1-pixel wide floe boundary 54.61% 25.05% 18.54%

Labels with 2-pixel wide floe boundary 41.63% 39.83% 18.54%

(a) Before post-processing. (b) After post-processing.

Figure 12. S2-2 image segmentation results by U-Net++ model1-pixel wide floe boundary labels. (a) Before post-processing; (b) After post-

processing. The detected individual ice floes are labelled in different colours, and the detected floe edges are plot in dark red. Blue rectangle

– over-segmentation region; green rectangle – under-segmentation region.

5.3 GVF-snake based method versus U-Net++

5.3.1 Segmentation

Figure 13 shows an example of floe segmentation on a 256×256 pixel airborne image with about 177 floes processed by

the GVF snake-based method and the U-Net++ model-based approach. In this example, the GVF snake-based method over-300

segmented 9 ice floes and under-segmented 4 floes, while the U-Net++ model under-segmented 45 floes. The U-Net++ model

is less sensitive to the weak edges, and also noise, than the GVF snake-based method, and it is more likely to under-segment

ice floes compared with the GVF snake-based method. However, the slight under-segmentation caused by the U-Net++ model

can be significantly alleviated by our post-processing method, e.g., leaving only 6 under-segmented floes as seen in Fig. 13(d),

while the over-segmentation made by the GVF snake-based method unfortunately cannot be recovered.305

Furthermore, due to the nature of the GVF force field, the GVF snake-based method may have difficulty in accurately

segmenting both large and small floes when the floes in an image vary greatly in size/shape. Taking Fig. 14(b) as an example,

the GVF snake-based method worked well in segmenting most small ice floes, but it failed in segmenting the largest ice floe

in the image, dividing the floe into several pieces. This shortcoming of the GVF snake-based method limits its applications to
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images other than MIZ images, i.e., the images with floes that are of great diversity in size or shape. As shown in Fig. 15, large310

floes in S2-2 image were severely over-segmented the GVF snake-based method.

Although the U-Net++ model was trained on the pseudo ground truth “annotated” on local-scale MIZ images by the GVF

snake-based method, it suffers less from such floe size/shape issues, as seen in Fig. 14(c) in which both large and small ice floes

were well segmented by the U-Net++ model. It can also be extended to process HRO satellite imagery data at global scales as

seen in Fig. 11(g). The the U-Net++ model-based approach is thus more robust than the GVF snake-based method.315

(a) An airborne MIZ image sam-

ple.

(b) GVF snake-based segmenta-

tion.

(c) U-Net++. (d) U-Net++ & post-processing

Figure 13. Comparison between the GVF snake-based method and U-Net++ on an airborne MIZ image. (a) An airborne MIZ image sample;

(b) Segmentation by the GVF snake-based method; (c) Preliminary segmentation by U-net++; (d) Final segmentation after post-processing

to (c). Blue rectangle – over-segmentation region; green rectangle – under-segmentation region.

(a) A small subset of S2-4 image. (b) GVF snake-based segmentation. (c) U-Net++.

Figure 14. Comparison between the GVF snake-based method and U-Net++ on an image containing floes that vary greatly in size and shape.

(a) A very small subset of S2-4 image where floes are of various sizes and shapes; (b) Over-segmentation by the GVF snake-based method;

(c) Preliminary segmentation by U-Net++. The detected individual ice floes are labelled in different colours, and the detected floe edges are

plot in dark red.
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Figure 15. Poor segmentation result of S2-2 image produced by the GVF snake-based method. The detected individual ice floes are labelled

in different colours, and the detected floe edges are plot in dark red.

5.3.2 Execution time

The GVF snake-based is a serial approach that detects ice floes one-by-one, and it will take a long time to process an image

with a large amount of ice floes; whereas the U-Net++ model segments individual floes in a parallel manner, meaning that it

will use much less execution time. The difference in execution time between the GVF snake-based method and the U-Net++

model-based approach will increase with larger images or the number of floes presented in the image. For example, with the320

CPU with the configurations illustrated in Section 2.2, the GVF snake-based method required around 308.263 seconds to find

all the individual ice floes for Fig. 13(a), and 60,292.4 seconds to generate a poor floe segmentation from the S2-2 image. In

contrast, the U-Net++ model-based approach took only about 4.234 seconds and 291.050 seconds to complete the segmentation

on these two images with acceptable floe identification results. Table 6 lists the execution times of the GVF snake-based method

and the U-Net++ model-based approach on S2 images. It is obvious that the U-Net++ model-based approach is two to three325

orders of magnitude faster than the GVF snake-based method and is more computationally efficient.

Table 6. Execution time by using CPU.

S2-1 S2-2 S2-3 S2-4

GVF snake-based 121,490 s 60,292.4 s 116,919 s 139,258 s

U-Net++ model-based 485.52 s 291.04 s 540.93 s 350.23 s

20



6 Ice floe segmentation results and floe size distributions

Our approach has been applied to the airborne MIZ images and successfully segmented individual ice floes at local scales,

even when large numbers of small ice floes are tightly connected, as seen in Figures 16(e) - 16(h). Beyond this, our approach

was further extended to process HRO satellite imagery data at global scales, where ice floes vary greatly in shape and size.330

Although the DL model in the approach was trained on the limited dataset consisting only of local-scale MIZ images, it still

produced satisfactory floe segmentation results for S2 images, as shown in Figures 17(e) - 17(h). With the results of ice floe

segmentation, it becomes easier to determine SIC and floe characteristics from the image.

Following the existing studies (Rothrock and Thorndike, 1984; Lu et al., 2008), we use the mean caliper diameter (MCD)

as the measure of floe size. The MCD of an ice floe is the average over all angles of the distance between two parallel lines, or335

calipers, that are set against the floe’s side walls. It can be simply calculated by (Toyota et al., 2011):

di = 1.087

√
4Ai

π
(5)

where Ai is the area of floe i. Many studies have shown that the FSD revealed from aerial or satellite images is basically scale

invariant, and the cumulative floe number distribution (CFND), Nc(d), which is the number of floes per unit area with MCD

no less than d, can be represented by a power law function, that is:340

Nc(d) =
N(> d)

Ntotal
∝ d−α (6)

where Ntotal is the total number of ice floes, and α is the power law exponent used to characterise FSD (Rothrock and

Thorndike, 1984; Mellor, 1986; Holt and Martin, 2001; Toyota and Enomoto, 2002; Steer et al., 2008; Lu et al., 2008; Toyota

et al., 2011; Perovich and Jones, 2014).

Here, we follow these studies and use power law exponents that fit the CFND curve to characterise FSD. Figures 16(i) -345

16(l) and Figures 17(i) - 17(l) show the FSD determination result for local-scale MIZ images and to global-scale S2 images

respectively, where α is the slope of the power law curve in logarithmic space. For the FSDs of local-scale MIZ, the curve

slope changes greatly with the increase of floe size. α is between 0.6 and 0.7 when the floe size is below than 10 m, but it

rapidly increases and exceeds 2.4 when floe size is above 10 m. While for the FSDs derived from global-scale S2 images, the

curve slope increases less with increasing floe size. α averages about 1.4 and 2.0 for floe size smaller and larger than 1000 m,350

respectively.

In applying our approach to both local-scale airborne MIZ images and to global-scale HRO satellite image data, we can see

that there are inherent limits to the resulting FSD. The MIZ images are on average 0.22 m resolution, with a footprint 1.225 x

0.689 km2. Using the floe size terminology of the operational monitoring of the World Meteorological Organisation (on Sea Ice,

2014), this makes them ideal for determining the distribution of pancake ice, small ice cake, brash ice, and agglomerated brash,355

and sizes up to small floes of width 100 m. However once floes exceed this size, i.e. medium-sized floes, it is likely that there

will be a cut-off in the FSD as floes become cropped by the image boundaries.

In contrast, the S2 images are 10 m resolution with a footprint of 110.0 x 110.0 km2. These cover the upper part of the

FSD, from small floes down to 20 m width through to vast floes where the width is up to 10 km. Only the smallest floes
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(a) MIZ-1 image. (b) MIZ-2 image. (c) MIZ-3 image. (d) MIZ-4 image.

(e) MIZ-1 image segmentation. SIC =

63.6546%.

(f) MIZ-2 image segmentation. SIC =

85.5286%.

(g) MIZ-3 image segmentation.

SIC = 84.1209%.

(h) MIZ-4 image segmentation.SIC =

73.7770%.

(i) CFND of MIZ-1 image. (j) CFND of MIZ-2 image. (k) CFND of MIZ-3 image. (l) CFND of MIZ-4 image.

Figure 16. Determining and characterising FSD from local-scale airborne MIZ images. (a) MIZ-1 image (b) MIZ-2 image; (c) MIZ-3 image;

(d) MIZ-4 image; (e) Floe segmentation of MIZ-1 image; (f) Floe segmentation of MIZ-2 image; (g) Floe segmentation of MIZ-3 image; (h)

Floe segmentation of MIZ-4 image; (i) FSD of MIZ-1 image; (j) FSD of MIZ-2 image; (k) FSD of MIZ-3 image; (l) FSD of MIZ-4 image.

The detected individual ice floes are labelled in different colours, and the detected floe edges are plot in dark red.
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(a) S2-1 image. (b) S2-2 image. (c) S2-3 image. (d) S2-4 image.

(e) S2-1 image segmentation. SIC =

86.6861%,

(f) S2-2 image segmentation. SIC =

65.7758%,

(g) S2-3 image segmentation. SIC =

65.7758%.

(h) S2-4 image segmentation. SIC =

51.5449%,

(i) CFND of S2-1 image. (j) CFND of S2-2 image. (k) CFND of S2-3 image. (l) CFND of S2-4 image.

Figure 17. Determining and characterising FSD from global-scale S2 images. (a) S2-1 image (b) S2-2 image; (c) S2-3 image; (d) S2-4 image;

(e) Floe segmentation of S2-1 image; (f) Floe segmentation of S2-2 image; (g) Floe segmentation of S2-3 image; (h) Floe segmentation of

S2-4 image; (i) FSD of S2-1 image; (j) FSD of S2-2 image; (k) FSD of S2-3 image; (l) FSD of S2-4 image.The detected individual ice floes

are labelled in different colours, and the detected floe edges are plot in dark red.
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size categories, from pancake ice through to ice cakes, are not resolved. This broader range of foe sizes are preferable for360

navigational applications, and for comparison and validation of lower resolution sea ice datasets, particularly SIC from passive

microwave sensors and ice charts. The spatial scales are also relevant for integration with sea ice freeboard measurement from

NASA ICESat-2 (Kwok et al., 2023), allowing ice floe mass to be assessed in areas where there are coincident data.

7 Discussion and conclusion

We have achieved automatic labelling of dataset for training a DL semantic segmentation model for ice floe instance segmen-365

tation, where the classical image processing technique were utilised to replace human labelling of individual ice floes and

automatically generate “ground truth” from the airborne MIZ images at local scales. A post-processing algorithm is also pro-

posed to refine the model outputs. Our approach has been applied to both airborne and satellite sea ice floe images to determine

FSDs from local to global scales and from low to high SIC. Our approach can be used to analyse optical sea ice images for

determining FSDs and other floe characteristics for use in climate, meteorology, environment etc. Especially for marine oper-370

ations, our approach provides the possibility of online monitoring of in situ ice conditions and early warning of risky ice floes,

thus offering better data for path planning and improving maritime safety.

In the application of spatial and temporal extraction of ice floe from S2 images, our approach yields superior floe instance

segmentation results for the floes with relatively flat surfaces, and is proven to be time-efficient and effective. However, when

the floes contains many melt ponds (e.g., summer floes), our approach tends to over-segment them. This is because the DL375

model was trained on MIZ images containing only three classes: ice floe, ice floe boundary, and water. The model therefore

has no experience in handling melt ponds. Since the pixel intensities of melt ponds are between those of ice floe and water

(Lu et al., 2018), the DL model often misidentifies melting ponds as floe boundaries, which easily leads to over-segmentation.

An idea to reduce the misidentification of melt ponds is to potentially use additional sea ice classification methods to detect

melt pond regions (Miao et al., 2015; Sudakow et al., 2022). Then catalog these melt pond pixels to the class of floe in DL380

prediction, and finally refine the floe segmentation using the proposed post-processing.

Since the current DL model also does not consider the class of cloud/cloud shade, our approach has limitations in process-

ing the floe images with clouds, where the cloud and cloud shade may be mistaken as ice floe and boundaries respectively.

Existing cloud masking methods, Sen2Cor (Muller-Wilm) and Fmask (Zhu et al., 2015), can help classify clouds in Sentinel-2

images. Then the ice floes detected near the cloud regions which are likely to be incorrectly segmented can be excluded when385

determining FSDs.

Post-processing is used to refine the floe segmentation, such as removing “holes” in large floes, preserving floe shape, and

separating potentially under-segmented floes that may affect FSDs. This is a necessary step to maintain the integrity of the

ice floe, especially when the surface of the floe is noisy, i.e. contains by small melt ponds, partially covered by small clouds,

etc. In our post-processing, we have proposed criteria to automatically check whether the detected floes are well segmented390

to decide whether to perform subsequent morphological opening and closing. The area cut-off threshold Ta for finding the

potential under-segmented floes and the area threshold T
′

a for finding floes require a smooth shape are two main parameters
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in our post-processing that need to be adjusted according to image scale and/or practical application needs, while the solidity

cut-off threshold Ts kept constant at 0.85. The pure morphological operations adopted in our post-processing often require

extensive manual parameter tuning to segment floes even from a single image, since they operate on the binarised image and395

relies on how well the edges are detected between connected floes. As the DL method detects more accurate floe boundaries,

morphological operations in our post-processing become less dependent on parameters in refining floe segmentation (a disk-

shaped structuring element with a radius of 4 pixels was used in the morphological operations), making the entire process more

automated.

So far, we have not found a good solution to the problem of ambiguous over-segmentation in a single optical floe image (e.g.,400

the middle-left part of the biggest floe in S2-2 image in Fig. 11). A series of images of the same area over different periods or

other types of the remote sensing data may be needed to help determine whether the floe is over-segmented.

DL techniques require a large annotated dataset to obtain a powerful DL models. Unlike other popular image processing tasks

that already have large amounts of public datasets (Lin et al., 2014; Deng et al., 2009; Kuznetsova et al., 2020; kag), obtaining

large labeled image datasets for the ice floe segmentation task is very challenging. This limits the development of deep learning405

technique in ice floe segmentation, and it is therefore desired to establish dataset for floe segmentation application. Due to the

limited training dataset, the current DL model in our approach have some limitations. However, it still can be utilised as

a “higher version” of “annotation tool” and produce more “ground truth” from a wide variety of ice image data sources,

contributing to the establishment of datasets suitable for ice floe segmentation tasks, as well as further training more robust DL

models for obtaining more accurate ice parameters from images.410

Our floe mapping approach can be applied to widely available, and free to access, near-real time (NRT) HRO images

from Copernicus Sentinel-2. Previous studies, e.g. have been limited to airborne or declassified military satellite images (e.g.

MEDEA used in (Denton and Timmermans, 2022) and (Wang et al., 2023)) or X-band SAR (Ren et al., 2015; Hwang et al.,

2017). Neither of these can provide the regional, NRT coverage to make them viable in operational monitoring for maritime

safety. We appreciate that HRO is still cloud and nighttime darkness limited, but the benefit of using Sentinel-2 is in combi-415

nation with other approaches, especially SAR-based classifications, when cloud-free periods allow. We look forward to the

darkness limitation being solved with the future Copernicus Land Surface Temperature Monitoring (LSTM) mission.

Data availability. Examples of NetCDF files of S2 images segmented for ice floes and containing both georeferenced gridded and vector

polygon data can be downloaded from https://thredds.met.no/thredds/catalog/digitalseaice/catalog.html. These contain ancillary data includ-

ing a panchromatic quicklook of the original S2 image, Sen2Cor (Muller-Wilm) and FMask (Zhu et al., 2015) cloud masks, and a table of420

floe metrics including area, perimeter and long-axis lengths, and orientation.

A catalogue GeoJSON file of the NetCDF files, to aid geospatial and temporal locating of the examples, can be found at https://bit.ly/

s2floemaps. Further examples will be added, with the intention of making this a routine, operationally available product in the future.
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