Preprints
https://doi.org/10.5194/egusphere-2023-2877
https://doi.org/10.5194/egusphere-2023-2877
08 Dec 2023
 | 08 Dec 2023

Northern vs. southern hemisphere differences in the stratospheric influence on variability in tropospheric nitrous oxide

Cynthia Nevison, Qing Liang, Paul Newman, Britton Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort

Abstract. We present a chemistry-climate model with a tagged stratospheric nitrous oxide (N2O) tracer that predicts distinct seasonal cycles in tropospheric N2O caused by descent of N2O-depleted stratospheric air in polar regions. We identify similar phenomena in recently available aircraft profiles from global campaigns and routine monitoring. Long-term atmospheric measurements from the National Oceanic Atmospheric Administration (NOAA) global surface monitoring network provide additional support for a significant impact on surface N2O originating from the stratosphere. In the northern hemisphere, the NOAA surface N2O atmospheric growth rate anomaly is negatively correlated with the previous winter’s polar lower stratospheric temperature. This negative correlation is consistent with increased (decreased) transport in years with a strong (weak) Brewer Dobson circulation of warm, N2O-depleted air from the middle and upper stratosphere into the lower stratosphere, with subsequent cross-tropopause transport of the N2O-depleted air into the troposphere. In the southern hemisphere, polar lower stratospheric temperature is correlated to monthly summertime anomalies in tropospheric N2O as it descends into its seasonal minimum, a result that is supported by aircraft data as well as the chemistry-climate model. However, the N2O atmospheric growth rate anomaly in the southern hemisphere is better correlated to the stratospheric quasi-biennial oscillation (QBO) index, as well as the El Niño Southern Oscillation index, than to polar lower stratospheric temperature. These hemispheric differences in the factors influencing the N2O atmospheric growth rate are consistent with known atmospheric dynamics and the complex interaction of the QBO with the Brewer Dobson circulation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

20 Sep 2024
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024,https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study examines the drivers of interannual variability in tropospheric N2O. New insights are...
Share