Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-283
https://doi.org/10.5194/egusphere-2023-283
24 Apr 2023
 | 24 Apr 2023

Validation of the WRF-ARW Eclipse Model with Measurements from the 2019 & 2020 Total Solar Eclipses

Carl E. Spangrude, Jennifer W. Fowler, William Graham Moss, and June Wang

Abstract. Field research campaigns in 2019 and 2020 collected hourly atmospheric profiles via radiosonde surrounding the 2 July 2019 and 14 December 2020 total solar eclipses over South America from locations within the paths of eclipse totality. As part of these atmospheric data collection campaigns, the eclipse module of the Advanced Research Weather Research & Forecast (WRF-ARW) model was utilized to model meteorological conditions before, during, and after the eclipse events. The surface and upper air measurements collected through these campaigns have enabled further assessment and validation of the WRF-ARW eclipse module’s performance in simulating atmospheric responses to total solar eclipses. We provide here descriptions of both field campaigns and present results from comparisons of meteorological variables both at the surface and aloft using observational datasets obtained through the campaigns. The paper concludes by recommending further scientific analyses to be explored utilizing the unique datasets presented.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

03 Nov 2023
Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses
Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang
Atmos. Meas. Tech., 16, 5167–5179, https://doi.org/10.5194/amt-16-5167-2023,https://doi.org/10.5194/amt-16-5167-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Atmospheric measurements were completed for two total solar eclipses. An eclipse-specific...
Share