Preprints
https://doi.org/10.5194/egusphere-2023-2800
https://doi.org/10.5194/egusphere-2023-2800
12 Dec 2023
 | 12 Dec 2023

Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement

Philipp Suessle, Jan Taucher, Silvan Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell

Abstract. Ocean alkalinity enhancement (OAE) has been proposed as a carbon dioxide removal technology (CDR) allowing for long term storage of carbon dioxide in the ocean. By changing the carbonate speciation in seawater, OAE may potentially alter marine ecosystems with implications for the biological carbon pump. Using mesocosmsthe subtropical North Atlantic, we provide first empirical insights into impacts of carbonate-based OAE on the vertical flux and attenuation of sinking particles in an oligotrophic plankton community. We enhanced total alkalinity (TA) in increments of 300 μmol kg-1, reaching up to ΔTA = 2400 µmol kg-1 compared to ambient TA. We applied a pCO2-equilibrated OAE approach, i.e. dissolved inorganic carbon (DIC) was raised simultaneously with TA to maintain seawater pCO2 in equilibrium with the atmosphere, thereby keeping perturbations of seawater carbonate chemistry moderate. The vertical flux of major elements including carbon, nitrogen, phosphorus and silicon, as well as their stoichiometric ratios (e.g. carbon-to-nitrogen) remained unaffected over 29 days of OAE. The particle properties controlling the flux attenuationinking velocities and remineralization rates also remained unaffected by OAE. However, we observed abiotic mineral precipitation at high OAE levels (ΔTA = 1800 μmol kg-1 and higher) that resulted in a substantial increase in PIC formation. The associated consumption of alkalinity reduces the efficiency of CO2 removal and emphasizes the importance of maintaining OAE within a carefully defined operating range. Our findings suggest that carbon export by oligotrophic plankton communities is insensitive to OAE perturbations using a CO2 pre-equilibrated approach. The integrity of ecosystem services is a prerequisite for large-scale application and should be further tested across a variety of nutrient-regimes and for less idealized OAE approaches.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

08 Jan 2025
| Highlight paper
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Philipp Suessle, Jan Taucher, Silvan Urs Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
Biogeosciences, 22, 71–86, https://doi.org/10.5194/bg-22-71-2025,https://doi.org/10.5194/bg-22-71-2025, 2025
Short summary Co-editor-in-chief
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

This paper examines the effects of ocean alkalinity enhancement (OAE) on a key biogeochemical...
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine...
Share