Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-2762
https://doi.org/10.5194/egusphere-2023-2762
08 Dec 2023
 | 08 Dec 2023

Simulations of the collection of mesospheric dust particles with rocket instrument

Adrien Pineau, Henriette Trollvik, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann

Abstract. We investigate the collection of dust from the mesosphere with the MESS instrument that is designed to fly on a sounding rocket. The instrument consists of a collection device with an opening and closure mechanism and an attached conic funnel. Attaching the funnel increases the sampling area in comparison to the collection area. The instrument will collect primary particles that directly hit the collection area and secondary particles that form from mesospheric dust hitting the funnel. We simulate the entry and impact of dust onto the detector considering their trajectories in the airflow and the fragmentation at the funnel. We estimate the collection efficiency of the instrument and the impact energy of particles at the collecting area. The design considered has a sampling area of 5 cm diameter and a collection area of 1.8 cm diameter.

We use the results of the calculations to estimate the amount of dust that MESS (MEteoric Smoke Sampler) can collect during a rocket flight. We consider meteoric smoke particles (MSP) based on a model of the MSP distribution. In addition we assume that water ice particles that form close to the mesopause contain a fraction of smaller MSP. The water ice sublimates during the collection or later during rocket flight so that only refactory material remains. Assuming the collected particles contain 3 % volume fraction of MSP, we find that the instrument would collect of the order of 1014 to 1015 amu of refractory MSP particles. The estimate basis on the assumption that the ice components are melting and the flow conditions in the instruments are for typical atmospheric pressures at 85 km. Aside from the instrument conditions that we investigate in this paper, our estimate of the mass that we expect to collect with MESS applies the results from a particle transport model for the meteoric smoke particles and from the description of noctilucent cloud particles based on published model and observational results.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

28 Jun 2024
Simulations of the collection of mesospheric dust particles with a rocket instrument
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024,https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made...
Share