Preprints
https://doi.org/10.5194/egusphere-2023-2749
https://doi.org/10.5194/egusphere-2023-2749
23 Nov 2023
 | 23 Nov 2023

Contribution of Cooking Emissions to the Urban Volatile Organic Compounds in Las Vegas, NV

Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke

Abstract. Cooking is a source volatile organic compounds (VOCs) that degrades air quality. Cooking VOCs have been investigated in laboratory and indoor studies, but the contribution of cooking to the spatial and temporal variability of urban VOCs is uncertain. In this study, a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) is used to identify and quantify cooking emission in Las Vegas, NV with supplemental data from Los Angeles, CA and Boulder, CO. Mobile laboratory data show that long-chain aldehydes, such as octanal and nonanal, are significantly enhanced in restaurant plumes and regionally enhanced in areas of Las Vegas with high restaurant density. Correlation analyses show that long-chain fatty acids are also associated with cooking emissions and the relative VOC enhancements observed in regions with dense restaurant activity are very similar to the distribution of VOCs observed in laboratory cooking studies. Positive matrix factorization (PMF) is used to quantify cooking emissions from ground site measurements and compare the magnitude of cooking to other important urban sources, such as volatile chemical products and fossil fuel emissions. PMF shows that cooking may account for as much as 20 % of the total anthropogenic VOC emissions observed by PTR-ToF-MS. In contrast, emissions estimated from county-level inventories report that cooking accounts for less than 1 % of urban VOCs. Current emissions inventories do not fully account for the emission rates of long-chain aldehydes reported here and further work is likely needed to improve model representations of important aldehyde sources, such as commercial and residential cooking.

Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2749', Anonymous Referee #1, 23 Dec 2023
  • RC2: 'Comment on egusphere-2023-2749', Anonymous Referee #2, 04 Jan 2024
  • AC1: 'Comment on egusphere-2023-2749', Matthew Coggon, 23 Feb 2024

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2749', Anonymous Referee #1, 23 Dec 2023
  • RC2: 'Comment on egusphere-2023-2749', Anonymous Referee #2, 04 Jan 2024
  • AC1: 'Comment on egusphere-2023-2749', Matthew Coggon, 23 Feb 2024
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke

Viewed

Total article views: 411 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
253 141 17 411 39 8 11
  • HTML: 253
  • PDF: 141
  • XML: 17
  • Total: 411
  • Supplement: 39
  • BibTeX: 8
  • EndNote: 11
Views and downloads (calculated since 23 Nov 2023)
Cumulative views and downloads (calculated since 23 Nov 2023)

Viewed (geographical distribution)

Total article views: 400 (including HTML, PDF, and XML) Thereof 400 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Feb 2024
Download
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, Nevada. These emissions are poorly represented in air quality models and more work may be needed to quantify emissions from important sources, such as commercial restaurants.