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1 Characterizing PTR-ToF-MS Measurements of Carbonyls in Las Vegas 
 
Long-chain carbonyls are measured by PTR-ToF-MS as the sum of isomers. Differences in 

isomer speciation provide evidence for varying emission sources. For example, VCP emissions 
from inks and coatings contain C5 – C7 ketones such as 2-heptanone and 4-methyl-2-pentanone 
(McDonald et al., 2018), while cooking emits high amounts of C5 – C7 aldehydes (Klein et al., 
2016). VCPs emit few carbonyls with C > 7 (McDonald et al., 2018), whereas cooking is a 
significant source of C8 – C11 aldehydes (Klein et al., 2016;Schauer et al., 1999). To determine the 
dominant carbonyls detected by PTR-ToF-MS in Las Vegas, GC-PTR-ToF-MS data are used to 
pre-separate isomers and evaluate carbonyl distributions. 

 
Figure S1A is a GC-PTR-ToF-MS chromatogram of C5 – C9 carbonyls measured along the 

Las Vegas Strip during a nighttime drive on July 30, 2021. Each peak shows the expected proton-
transfer reaction product (= VOC mass + H+), the dehydration products that are typically observed 
from aliphatic aldehydes (= VOC mass + H+ - H2O) (Pagonis et al., 2019;Buhr et al., 2002), and 
additional ions that are expected from fragmentation for some molecules (e.g., octanal and 
nonanal). Figure S1B and S1C show chromatograms of C8 and C9 carbonyl standards as examples 
of how different carbonyls are detected by PTR-ToF-MS.  The ketone isomers (e.g., 2-octanone 
and 2-nonanone) exhibit minimal fragmentation and are predominantly detected at the proton-
transfer product at m/z 129 (C8H16OH+) and m/z 143 (C9H18OH+). In contrast, aldehydes mostly 
undergo dehydration and fragmentation, resulting in additional signals at m/z 111 (C8H15+) and 
m/z 69 (C5H8+) for octanal and 125 (C9H17+), m/z 83 (C6H10+), and m/z 69 (C5H8+) for nonanal. 
Fragmentation patterns for other aldehydes are shown in Fig. S2 and compared to observations 
from other PTR-MS designs (Buhr et al., 2002). The proton-transfer product for aldehydes 
increases with carbon number, while the contribution from the dehydration product deceases as 
additional fragmentation results in lower carbon ions. These differences in fragmentation 
distinguish ketone and aldehyde isomers in GC samples. 

 
The GC-PTR-ToF-MS chromatograms in Figure S1A show that aldehydes are the dominant 

carbonyls observed in the Las Vegas Strip area. Broadly, the peaks show that the fragmentation 
patterns observed at major carbonyl retention times agree with the expected dehydration products 
of aldehydes. Closer inspection of the proton-transfer products show that signals from C5 – C7 
ketone isomers are also present in this region (likely due to VCP emissions), and therefore the 
proton-transfer product ions for C5 – C7 carbonyls (m/z 115, 101, and 87) alone cannot provide 
robust constraints on the spatial and temporal distribution of aldehydes in urban areas. The 



dehydration products from C5 – C7 aldehydes (e.g., m/z 69, 83, and 97) distinguish these isomers 
from ketones, though it is unlikely that these ions could be used for aldehyde quantification since 
they are also produced from the proton-transfer of isoprene and fragmentation of cycloalkanes 
(Pagonis et al., 2019).  
 

 
Figure S1: (A) GC-PTR-ToF-MS chromatogram showing aldehyde peaks in the Las Vegas Strip area 
during an evening drive on July 30, 2021. (B and C) GC-PTR-ToF-MS chromatogram of aldehyde and 
ketone standards and their corresponding fragmentation patterns. The peaks in the ambient chromatogram 
correspond to aldehydes and not ketones. 
 

Figure S1A shows that carbonyl proton-transfer products at m/z 129 and 143 do not exhibit 
significant contribution from ketones isomers in the Las Vegas Strip area. The ion distribution 
observed from the ambient GC-PTR-ToF-MS samples agrees well with the fragmentation patterns 
from octanal and nonanal standards (Fig. S2B), and no additional peaks are observed in the 
ambient chromatogram that would suggest significant contributions to these ions from other 
VOCs. Therefore, m/z 129 and m/z 143 can be used to quantify octanal and nonanal without 
significant interferences in the Las Vegas Strip area. The proton-transfer products for octanal and 
nonanal are also a larger fraction of the total signal compared to smaller aldehydes (Fig. S3), which 
indicates that these ions are detected with higher sensitivity. 
 



 
Figure S2: Distribution of ions detected by PTR-ToF-MS for C5 – C9 aldehydes. Solid bars represent 
distributions measured using a Vocus (this work) and hashed bars are distributions reported by Buhr et al. 
(Buhr et al., 2002). Contributions from “other” ions includes fragments and water clusters. 
 

Mobile laboratory data also show that octanal and nonanal are the dominant carbonyl isomers 
throughout the Las Vegas region. Figure S3 shows PTR-ToF-MS measurements of m/z 129 and 
m/z 143 vs. dehydration products (m/z 125 and 111) for the entire mobile laboratory dataset. Other 
compounds, such as cycloalkanes, contribute to the signals at m/z 111 and 125 (Gueneron et al., 
2015;Warneke et al., 2014), which explains periods when m/z 111 and 125 are elevated in the 
absence of m/z 129 and m/z 143. This also increases the variability in the dehydration products 
compared that observed for pure aldehyde standards. Most data scatter on a line that closely 
matches the expected fragmentation patterns for aldehydes (solid line). Furthermore, there are few 
data points that indicate significant contributions from ketones, which would be present as high 
contribution from proton-transfer products and low contributions from dehydration products 
(dotted line).  Figures S1 and S3 demonstrate that the C8 – C9 carbonyls detected by PTR-ToF-MS 
in Las Vegas are predominantly associated with aldehydes.  

 



 
Figure S3: Mobile drive observations of (A) C9 and (B) C8 carbonyl proton-transfer products versus the 
corresponding dehydration products. The solid and dotted black lines show the aldehyde and ketone ratios 
from measured standards (Figure S1). 
 

2 Corrections to masses identified as aldehydes 
 

Figure S2 shows that C5-C9 aldehydes undergo significant dehydration and fragmentation 
reactions in PTR-ToF-MS. These compounds are among the major VOCs emitted from cooking 
(Klein et al., 2016;Schauer et al., 1999); consequently, corrections to these species are needed to 
account for the mass associated with cooking emissions. In all figures and tables, we correct 
aldehyde sensitivities using the carbon-dependent fragmentation patterns shown in Fig. S2. First, 
we determine PTR-ToF-MS sensitivities using measured or estimated proton transfer rate 
constants as described by Sekimoto et al. (2017). We then multiply this sensitivity by the fraction 
of total signal attributed to the proton-transfer rate constant of the aliphatic aldehyde with the same 
carbon number. For aldehydes with C > 9, we assume a fragmentation pattern that is similar to 
nonanal. We do not apply corrections to aldehydes with C < 5 since these compounds are not 
observed to fragment significantly in PTR-ToF-MS (Pagonis et al., 2019). Sensitivities for 
acetaldehyde, acrolein, propanal, methacrolein + crotonaldehyde, octanal, and nonanal are directly 
calibrated and therefore not corrected using this method. 
 
 

3 Positive Matrix Factorization (PMF) Analysis 
 

Positive matrix factorization (PMF) was conducted using the Source Finder (SoFi) software 
package in Igor Pro (Canonaco et al., 2013) to apportion VOCs to cooking and other urban 
emission sources, such as VCPs and motor vehicles. PMF is a bilinear factor model described by 



Paatero (1999) and its application to ambient mass spectra is widely used and summarized 
elsewhere (Canonaco et al., 2013;Ulbrich et al., 2009). In short, PMF statistically apportions a 
matrix of data (X) into the linear combination of factor profiles (G) and temporally varying factor 
abundancies (F) as described by Equation 1. 

 
X = GF + E     (Eq 1) 

 
Where E is a matrix of model residuals. Inputs to the PMF algorithm include the time-varying 

data matrix, X, and a time-varying matrix of sample uncertainties (termed the “error matrix”). In 
this analysis, we evaluate the temporal behavior of 270 ions on a 10 min time basis. The error 
matrix reflects the uncertainty of each measurement and is calculated as two times the standard 
deviation of background mixing ratios. 

 
The columns in G and the rows in F correspond to the “factors” fit by PMF to dataset X. 

Increasing the number of factors results in lower model residuals but can result in solutions that 
are non-physical. The number of factors fit to the dataset is partly chosen in order to minimize the 
model uncertainty to within measurement errors. The number of factors is also chosen in order to 
explain feasible emission sources and are justified by comparing factor profiles to molecular 
markers, emission fingerprints, or previously established factor profiles. In this analysis, PMF 
solutions were determined for 1–10 factors, but we focus on a PMF solution with 5 factors (see 
Section 2.2) 
 

SoFi utilizes the multi-linear engine (ME-2) described by Paatero (1999). A key function of 
ME-2 is that it allows a user to input a factor profile that describes the relative distribution of VOCs 
associated with a given source. The degree to which this constraint is enforced in SoFi is dictated 
by a scalar “a-value” as described by Equation 2. 

 
𝑔!,#$%&'!$( = 𝑔! + 𝑎 ∙ 𝑔!     (Eq 2) 

 
Where gi,solution is the factor solution resolved by PMF (G, Eq. 1), gi is the factor profile 

constraint, and a is the a-value. When a = 0, gi,solution is fully constrained to gi. Positive values allow 
the software to solve for gi,solution within uncertainty bounds dictated by the term 𝑎 ∙ 𝑔!. In this 
analysis, we constrain PMF with a mobile source profile derived from mobile measurements 
following the recommendations of Gkatzelis et al. (2021c) and vary a from 0.1–1 (See Section 
2.1). A focus of this analysis are solutions where a = 0.75; however, we discuss how a 5-factor 
solution varies as a function of a (see Section 2.2). 

 
 

3.1 Mobile Source Constraint 
 



Previous PMF analyses on PTR-ToF-MS data in New York City (NYC) showed that resolving 
co-located sources can be challenging (Gkatzelis et al., 2021b). Fossil fuels were historically a 
dominant source of VOCs in US urban areas; however, years of regulation have resulted in major 
declines in fossil fuel VOC mixing ratios (Bishop and Haugen, 2018;Warneke et al., 2012). 
Consequently, molecules previously assigned to mobile sources, such as aromatics and ethanol, 
now have significant contributions from solvent sources such as paints and coatings (McDonald 
et al., 2018;Gkatzelis et al., 2021a;Gkatzelis et al., 2021b). For example, Figure S4 shows the time 
series of benzene, toluene, and the sum of C8-aromatics measured at the Jerome Mack ground site. 
Benzene is often attributed to fossil fuels since it is banned from consumer products, while toluene 
and C8-aromatics (e.g., xylenes) can result from both mobile sources and emissions from solvent-
borne products (McDonald et al., 2018). At the Jerome Mack ground site, there are periods when 
aromatics correlate well (likely mobile source emissions), and there are periods when toluene and 
C8-aromatics are significantly higher than benzene (likely due to a solvent source). Gkatzelis et al. 
(2021b) made similar observations in NYC, and it was found that an unconstrained PMF analysis 
resulted in a source apportionment that mixed the contributions from VCPs and mobile sources. 

 

 
Figure S4. Time series of aromatic species measured at the Jerome Mack ground site. 
 
 

To help separate mobile sources from VCPs in NYC, Gkatzelis et al. (2021b) constrained PMF 
with a mobile source profile that was representative of the fossil fuel emissions in the NYC area. 
This profile was determined using on-road VOC measurements measured by mobile laboratory, 
which can be used to identify and separate VOC plumes resulting from tailpipe emissions from 
other plumes resulting from sources such as VCPs. We follow the methods by Gkatzelis et al. 
(2021b) and determine a mobile source profile for Las Vegas using the mobile laboratory data 
collected throughout the Las Vegas Valley. Figure S5 illustrates our methods. Briefly, we identify 
periods when on-road mixing ratios of aromatic species, such as benzene, toluene, and C8-
aromatics, are enhanced above background mixing ratios by at least a factor of five (stringency 
criteria). We screen these plumes to exclude periods when VCP tracers are enhanced (e.g., 



monoterpenes, D5-siloxane). These on-road plumes must also be enriched in CO and NOx, which 
further differentiates mobile source enhancements of aromatics from solvent-borne emissions. We 
subtract out the local VOC background just outside of the plume to correct for VOCs with large 
regional mixing ratios (e.g., acetone, ethanol, etc.), then normalize plume-enhanced VOC mixing 
ratios by the total VOCs measured by PTR-ToF-MS. The mobile source profile is calculated as 
the average of these normalized plume profiles. In total, 100 plumes were identified and included 
in this analysis. 

 
Figure S5. Mobile laboratory data showing the methods for screening for on-road mobile source 
emissions. Plumes are identified based on enhancements of aromatics and combustion tracers (not 
shown), and screened to exclude periods when VCP tracers, such as monoterpenes and D5-
siloxane, are enhanced. 
 

The resulting VOC profile is shown in Figure S6. The derived profile is very similar to the 
mobile fingerprint determined by Gkatzelis et al. (2021b). The profile demonstrates that ethanol is 
the dominant VOC from mobile sources measured by PTR-ToF-MS, followed by aromatics. 
Ethanol is also an important contributor to VCP emissions and therefore it is important to constrain 
ethanol for quantitatively apportioning VCP and mobile source emissions. 

 
A series of sensitivity analyses were conducted to assess how the derived mobile source profile 

changes under different stringency criteria. Panels A, B, C, and D show sensitivity analyses when 
benzene is enhanced over background (BG) by varying amounts. Benzene enhancements above 2 
ppb are considered “high emitters” and represent the upper 30% of all plumes identified in this 
analysis. Plumes averaged within the upper 74% of all emitters exhibit a similar mobile source 
profile as those averaged within the upper 94%. High emitters exhibit a significantly larger fraction 
of ethanol, but relatively similar proportion of aromatics. These results demonstrate that the 
fraction of ethanol in mobile source emission is likely between 0.5 – 0.6 ppb/ppb. 

 



 
Figure S6. The derived mobile source profile based on mobile laboratory data screening processes 
shown in Figure 10. Panels A-D shows the derived profile under different stringency criteria, and 
panel E shows that screening the data to include the upper 74% of all plumes changes the derived 
mobile source profile by ~2 %. 
 
 

3.2 PMF Results 
 
Figures S7 and S8 show PMF results for 2 - 5 factor solutions. In all cases, the mobile source 
constraint is applied with an a-value = 0.75. Figure S9 shows the goodness-of-fit parameter, 
Q/Qexpected, which is the ratio of model residuals to the theoretical residuals expected for a data 
matrix fit to within experimental error. When Q/Qexpected = 1, the solution is considered well-fit. It 
is common to evaluate changes in Q/Qexpected as additional factors are included.  
 
For a two-factor solution, PMF attributes mass to a mobile source and all “other” sources (Figure 
S7). Pushing PMF to a three-factor solution results in split of the “other” category into a factor 
profile that peaks during the daytime, and another factor that is dominant at night. The daytime 
factor is primarily composed of oxygenated VOCs along with species known to be emitted or 
formed during daytime hours (e.g., biogenic VOCs like isoporene, methyl vinyl ketone + 
methacrolein, and monoterpenes). Biogenic emissions in Las Vegas are very low (< 150 ppt, 
Coggon et al., 2023), therefore this daytime factor is primarily composed of oxidation products 
(Fig. S8). The nighttime factor is largely composed of VOCs linked to primary sources (e.g., VCPs 
and cooking), and its diurnal pattern is primarily driven by meteorology. The nocturnal boundary 
layer in Las Vegas is low, but daytime heat expands the boundary layer to as high as 10 km during 
the day (Langford et al., 2022). 
 
When the solution is pushed to a four-factor solution, a factor is resolved that is primarily composed 
of toluene and acetone with smaller contributions from xylenes and PCBTF. This factor exhibited 
a temporal profile characterized by brief, large enhancements in mixing ratios suggestive of a local 
source (Fig. 9, main text). PCBTF is a common component of solvent-borne coatings, such lacquers 



and paints (Stockwell et al., 2021), and we suspect that the source is associated with a cabinet-
making shop located ~300 m from the Jerome Mack ground site. We do not consider this factor 
representative of the regional VOC mixtures and therefore do not analyze it further. 
 

 
Figure S7. PMF diurnal profiles for 2 – 5 factors. Each column shows the resolved factor signal, 
and the description highlights the observed changes to the factor profiles. 
 
 

 
Figure S8. PMF factor profiles for 2 – 5 factors. Each column shows the resolved factor fingerprint, 
and the description highlights the observed changes to the factor profile.  
 

Mobile + “Other”

“Other” splits to 
daytime + 
nighttime

“Solvent” factor 
split from nighttime 

data + mobile 
source

“cooking-dominated” factor splits out

Mobile

Other

Mobile

Daytime

Nighttime

Mobile

Daytime

Nighttime

Solvent

Mobile

Daytime

VCP-dom.

Solvent

Cooking-dom.

2 Factors 3 Factors 4 Factors 5 Factors

Mobile + “Other”

“Other” splits to 
daytime + 
nighttime

“Solvent” factor 
split from nighttime 

data + mobile 
source

“cooking-dominated” factor splits out

Mobile Mobile Mobile Mobile

Other Daytime Daytime Daytime

Nighttime Nighttime VCP-dom.

Solvent Solvent

Cooking-dom

D5
Monoterp.

Monoterp.

Tex.

2 Factors 3 Factors 4 Factors 5 Factors



 
Figure S9. Q/Qexpected for 1 – 10 factors. Increases to the factor profiles result in improved residuals  
 
 

When the solution is finally pushed to five factors, PMF resolves a profile rich in aldehydes 
and another profile rich in ethanol, acetone, monoterpenes, and D5 These two factors are largely 
derived from the splitting of the nighttime and mobile source factors (Fig. S7). At 5 factors, the 
solution is nearly fit within the uncertainties of the measurements (Q/Qexp  = 1.3) and further 
increases in factors only result in modest improvements in residuals (Fig. S9). 

 
The final two factors are consistent with the expected profiles for VCPs and cooking. The 

VCP-dominated factor is primarily composed of ethanol (EOH), but also contains D5-siloxane, 
monoterpenes, and acetone, which are common ingredients in consumer products. This factor 
resembles the VCP-dominated factor resolved in the PMF analysis for NYC described by Gkatzelis 
et al. (2021c). In Section 4 of the main text, we show that the mass ratio of the VCP factor to the 
mobile source factor closely matches the distribution represented in emissions inventories for Clark 
County, NV (Fig. 11). The agreement between these distributions show that a five-factor solution 
reasonably explains the variability of important sources in the Las Vegas region. Solutions with a 
smaller number of factors overestimate the contribution of mobile source emissions, while solutions 
with larger numbers of factors do not provide meaningful factors. 

 
The cooking-dominated factor contains the aldehyde and acids that are shown by mobile 

laboratory measurements to be associated with commercial cooking emissions in Las Vegas (see 
Section 3.2). Figure S10 demonstrates how the factor profile resolved by PMF compares against 
the cooking profile measured along the Las Vegas Strip. In general, the PMF profile closely 
resembles the cooking profile resolved from mobile laboratory drives. There are a number of masses 
resolved by PMF that were not identified by the correlation analysis (e.g. ethanol, acetaldehyde, 
and acetone + propanal). These VOCs have significant contributions from mobile source and VCP 
emissions and could not be attributed to cooking by the simple correlation analysis used to 
determine the cooking fingerprint along the Las Vegas Strip (see Section 3.2). There are also some 
masses which are apportioned at lower ratios, including nonanal and heptadienal. These masses are 



partially apportioned to the VCP factor, which reflects the uncertainties associated with 
apportioning VOCs from co-located sources. Despite these differences, the general agreement 
between the cooking-dominated factor and the profile determined from the Las Vegas Strip 
confirms that the five-factor solution effectively resolves the VOC mass associated with cooking 
activities. We note that the cooking profile resolved by PMF is provided in Table S1. 
 

 

 
 
Figure S10. Comparison of the cooking-dominated factor resolved by PMF with the VOC/nonanal 
ratios observed along the Las Vegas Strip during mobile laboratory sampling. 
 
 

Figure S11 shows how the 5-factor solution varies under different a-values applied to the 
mobile source constraint. With no constraint (a = 1), the mobile source factor is estimated to be ~2 
times higher and the VCP-dominated factor ~4 times lower than what is resolved with more 
stringent constraints (a < 1). Similar observations were made by Gkatzelis et al. (2021c) and were 
associated with the overlap of VOCs that originate from both sources (e.g., ethanol, acetone, 
xylenes). The other factors (i.e., cooking, solvent, and daytime) show similar profiles as the 
solutions with a < 1. These results highlight the importance of applying source constraints in order 
to resolve VCP and mobile source emission contributions. 

 
For solutions with a < 1, the profiles are similar though there is notable variability. We 

estimate the variability as the ratio between the standard deviation and mean calculated for all of 
the diurnal profiles with a < 1. On average, the mobile source and VCP profiles vary by 30% and 
20%, respectively. This variability is reflected by changes to the PMF attribution of mass between 
these two sources. In contrast, the cooking, solvent, and daytime factors vary by < 7%. 
Consequently, while PMF variability may be highest for the mobile source and VCP factors, 
changes to the cooking factor are modest under different a-value constraints. In the main text, we 
present the solution for a = 0.75. This PMF analysis has the least constraints and provides a solution 
that best reflects the expected mobile source and VCP distribution represented by emissions 
inventories.  



 

 
Figure S11. PMF solutions for a 5-factor system where the a-value applied to the mobile source 
constraint varies from 0.1 (highly constrained) to 1 (not constrained). 
 

 
 
Table S1. Cooking profile resolved by PMF. Species assignments are based on the assignments 
provided by Klein et al. (2016). 

Assigned Species Formula SMILES 
MW 
(g/mol) Class 

Mass 
Fraction Notes 

acetaldehyde C2H4O CC=O 44.05 Ald 0.069 a,c 
ethanol C2H6O CCO 46.07 Alc 0.132 a,c 
acrolein C3H4O C=CC=O 56.06 Ald 0.007 a,c 
propanal C3H6O CCC=O 58.08 Ald 0.076 a,c 
acetic acid C2H4O2 CC(O)=O 60.05 Acid 0.069 a,c 
butenal C4H6O CC=CC=O 70.09 Ald 0.006 a,c 
propanoic acid C3H6O2 CCC(=O)O 74.08 Acid 0.012 a,c 
pentadienal C5H6O C=CC=CC=O 82.1 Ald 0.039 a,c 
butenedial C4H4O2 C(=CC=O)C=O 84.07 Ald 0.004 a,c 
pentenal C5H10O CCC=CC=O 84.12 Ald 0.041 a,c 
pentanal C5H10O CCCCC=O 86.13 Ald 0.038 a,c 
butyrolactone C4H6O2 O=C1OCCC1 86.09 Ket 0.015 a,c 
hexadienal C6H8O CC=CC=CC=O 96.13 Ald 0.043 a,c 
pentanoic acid C5H10O2 CCCCC(=O)O 102.13 Acid 0.004 a,c 
heptadienal C7H10O CCC=CC=CC=O 110.15 Ald 0.004 a,c 
heptenal C7H12O CCCCC=CC=O 112.17 Ald 0.009 a,c 
heptanal C7H14O CCCCCCC=O 114.19 Ald 0.013 a,c 
octadienal C8H12O CCCC=CC=CC=O 124.18 Ald 0.013 a,c 
octenal C8H14O CCCCCC=CC=O 126.2 Ald 0.011 a,c 
octanal C8H16O CCCCCCCC=O 128.21 Ald 0.013 a,c 
heptanoic acid C7H14O2 CCCCCCC(=O)O 130.18 Acid 0.001 a,c 

Mobile

Daytime

VCP-dom.

Solvent

Cooking

A = 0.1 A = 0.5 A = 0.75 A = 1



monoterpene C10H16 --- 136.23 Terp 0.010 a,c 
nonadienal C9H14O CCCCC=CC=CC=O 138.21 Ald 0.009 a,c 
nonenal C9H16O CCCCCCC=CC=O 140.22 Ald 0.004 a,c 
nonanal C9H18O CCCCCCCCC=O 142.24 Ald 0.012 a,c 
octanoic acid C8H16O2 CCCCCCCC(=O)O 144.21 Acid 0.002 a,c 
decatrienal C10H14O CCCC=CC=CC=CC=O 150.22 Ald 0.014 b,c 
decadienal C10H16O CCCCCC=CC=CC=O 152.23 Ald 0.012 a,c 
decenal C10H18O CCCCCCCC=CC=O 154.25 Ald 0.004 a,c 
decanal C10H20O CCCCCCCCCC=O 156.26 Ald 0.004 a,c 
nonanoic acid C9H18O2 CCCCCCCCC(=O)O 158.24 Acid 0.001 a,c 
undecenal C11H22O CCCCCCCCC=CC=O 168.28 Ald 0.001 a,c 
undecanal C11H20O CCCCCCCCCC=O 170.29 Ald 0.002 a,c 
decenoic acid C10H18O2 CCCCCCCC=CC(=O)O 170.25 Acid 0.002 b,c 
decanoic acid C10H20O2 CCCCCCCCCC(=O)O 172.26 Acid 0.001 a,c 
tridecanal C13H26O CCCCCCCCCCCCC=O 198.34 Ald 0.002 a,c 
Total     0.70  
       
Other Masses (lower certainty)         
furfural C5H4O2 C1=COC(=C1)C=O 96.08 Ald 0.005 b,c 
C7H8O2 C7H8O2 --- 124.14 Acid 0.005 c 
benzaldehyde C7H6O C1=CC=C(C=C1)C=O 106.12 Ald 0.004 a,c 
C6H8O2 C6H8O2 --- 112.13 Acid 0.004 c 
C6H10O2 C6H10O2 --- 114.14 Acid 0.016 c 
C8H1002 C8H1002 --- 138.16 Acid 0.003 c 
C8H12O2 C8H12O2 --- 140.18 Acid 0.003 c 
C8H14O2 C8H14O2 --- 142.2 Acid 0.006 c 
C9H14O2 C9H14O2 --- 154.21 Acid 0.002 c 
C9H16O2 C9H16O2 --- 156.22 Acid 0.002 c 
Total     0.05  
Unspeciated     0.25  
       

a isomer identity based on identity reported by Klein et al. (2016) 
b assumed isomer identity 
c compound class based on assignments given by Klein et al. (2016) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.3 Supplemental Figures to the Main Text 
 

 
Figure S12: Time series and diurnal pattern of octanal and nonanal in (A) Las Vegas, NV and (B) Pasadena, 
CA. Yellow and grey backgrounds indicate measurements conducted during the day (6:00 AM – 6:00 PM 
local time) and night (6;00 PM – 6:00 AM), respectively. 
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