Preprints
https://doi.org/10.5194/egusphere-2023-2711
https://doi.org/10.5194/egusphere-2023-2711
29 Nov 2023
 | 29 Nov 2023

The impacts of modelling prescribed vs. dynamic land cover in a high CO2 future scenario – greening of the Arctic and Amazonian dieback

Sian Kou-Giesbrecht, Vivek Arora, Christian Seiler, and Libo Wang

Abstract. Terrestrial biosphere models are a key tool in investigating the role played by the land surface in the global climate system. However, few models simulate the geographic distribution of biomes dynamically, opting to prescribe them instead using remote sensing products. While prescribing land cover still allows for the simulation of the impacts of climate change on vegetation growth as well as the impacts of land use change, it prevents the simulation of climate change-driven biome shifts, with implications for projecting the future terrestrial carbon sink. Here, we isolate the impacts of prescribed vs. dynamic land cover implementations in a terrestrial biosphere model. We first introduce a framework for evaluating dynamic land cover (i.e., the spatial distribution of plant functional types across the land surface), which can be applied across terrestrial biosphere models alongside standard benchmarking of energy, water, and carbon cycle variables. After establishing confidence in simulated land cover, we then show that the simulated terrestrial carbon sink differs significantly between simulations with dynamic vs. prescribed land cover for a high CO2 future scenario. This is because of important range shifts that are only simulated when dynamic land cover is implemented: tree expansion into the Arctic and Amazonian transition from forest to grassland. In particular, the projected net land-atmosphere CO2 flux at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with prescribed land cover. Our results illustrate the importance of climate change-driven biome shifts for projecting the future terrestrial carbon sink.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

24 Jul 2024
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Sian Kou-Giesbrecht, Vivek Arora, Christian Seiler, and Libo Wang

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2711', Anonymous Referee #1, 05 Feb 2024
    • AC1: 'Reply on RC1', Sian Kou-Giesbrecht, 06 Feb 2024
  • RC2: 'Comment on egusphere-2023-2711', Anonymous Referee #2, 16 Apr 2024
    • AC2: 'Reply on RC2', Sian Kou-Giesbrecht, 01 May 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2711', Anonymous Referee #1, 05 Feb 2024
    • AC1: 'Reply on RC1', Sian Kou-Giesbrecht, 06 Feb 2024
  • RC2: 'Comment on egusphere-2023-2711', Anonymous Referee #2, 16 Apr 2024
    • AC2: 'Reply on RC2', Sian Kou-Giesbrecht, 01 May 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (10 May 2024) by Xi Yang
AR by Sian Kou-Giesbrecht on behalf of the Authors (31 May 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (07 Jun 2024) by Xi Yang
AR by Sian Kou-Giesbrecht on behalf of the Authors (10 Jun 2024)  Manuscript 

Journal article(s) based on this preprint

24 Jul 2024
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Sian Kou-Giesbrecht, Vivek Arora, Christian Seiler, and Libo Wang
Sian Kou-Giesbrecht, Vivek Arora, Christian Seiler, and Libo Wang

Viewed

Total article views: 446 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
340 75 31 446 27 25
  • HTML: 340
  • PDF: 75
  • XML: 31
  • Total: 446
  • BibTeX: 27
  • EndNote: 25
Views and downloads (calculated since 29 Nov 2023)
Cumulative views and downloads (calculated since 29 Nov 2023)

Viewed (geographical distribution)

Total article views: 447 (including HTML, PDF, and XML) Thereof 447 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 01 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Terrestrial biosphere models can either prescribe the geographical distribution of biomes or simulate them dynamically, capturing climate change-driven biome shifts. We isolate and examine the differences between these different land cover implementations. We find that the simulated terrestrial carbon sink at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with prescribed land cover due to important range shifts in the Arctic and Amazon.