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Abstract. Terrestrial biosphere models are a key tool in investigating the role played by the land surface in the global 

climate system. However, few models simulate the geographic distribution of biomes dynamically, opting to prescribe them 

instead using remote sensing products. While prescribing land cover still allows for the simulation of the impacts of climate 

change on vegetation growth as well as the impacts of land use change, it prevents the simulation of climate change-driven 

biome shifts, with implications for projecting the future terrestrial carbon sink. Here, we isolate the impacts of prescribed vs. 15 

dynamic land cover implementations in a terrestrial biosphere model. We first introduce a new framework for evaluating 

dynamic land cover (i.e., the spatial distribution of plant functional types across the land surface), which can be applied 

across terrestrial biosphere models alongside standard benchmarking of energy, water, and carbon cycle variables in model 

intercomparison projects. After validating simulated land cover, we then show that the simulated terrestrial carbon sink 

differs significantly between simulations with dynamic vs. prescribed land cover for a high CO2 future scenario. This is 20 

because of important range shifts that are only simulated when dynamic land cover is implemented: tree expansion into the 

Arctic and Amazonian transition from forest to grassland. In particular, the projected change in net land-atmosphere CO2 

flux at the end of the 21st century is twice as large in simulations with dynamic land cover than in simulations with 

prescribed land cover. Our results illustrate the importance of climate change-driven biome shifts for projecting the future 

terrestrial carbon sink. 25 

1 Introduction 

Terrestrial biosphere models simulate the exchange of CO2, water, and energy between the atmosphere and the land surface 

under both current and future climatic and socioeconomic conditions. The results from these models have led to the critical 

understanding that the terrestrial biosphere currently sequesters approximately a third of anthropogenic CO2 emissions 

(Friedlingstein et al., 2022). Vegetation currently covers ~75% of global land area and plays a major role in regulating the 30 
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land-atmosphere exchange of CO2 (Fisher and Koven, 2020). Vegetation is a dynamic component of the global climate 

system that responds and feeds back to changes in environmental conditions at timescales ranging from seconds to centuries. 

Stomata, pores through which plants exchange CO2 and water with the outside air, respond to changes in environmental 

conditions within seconds (Vialet-Chabrand et al., 2017). Over the course of a day, vegetation responds to diurnal cycles of 

energy. Seasonality determines annual cycles of plant phenology and interannual climate variability regulates the land-35 

atmosphere exchange of CO2 over decades. Over decades to centuries, the geographical distribution of natural vegetation can 

also change as the geographical distribution of different biomes shift with long-term climate variations (Pecl et al., 2017). 

These changes to vegetation have critical implications for the terrestrial carbon (C) sink as well as feedbacks to the climate 

system. Because changes to the geographical distribution of natural vegetation occur over such long timescales, terrestrial 

biosphere models generally opt to prescribe the geographical distribution of natural vegetation rather than simulate it 40 

dynamically. This avoids the challenges associated with accurately reproducing the geographical distribution of natural 

vegetation which introduces another degree of uncertainty. However, when modelling the terrestrial biosphere over longer 

timescales, changes to the geographical distribution of natural vegetation are magnified and become critically important 

(Renwick and Rocca, 2015). 

Terrestrial biosphere models generally represent vegetation using a set of plant functional types (PFTs) due to the 45 

intractability associated with modelling ecosystem processes for each plant species individually. This classification scheme 

allows terrestrial biosphere models to simplify the diversity in physiology and abiotic interactions across plant species by 

clustering plant species by their fundamental structure and function (Box, 1996; Reich et al., 2003). Models may choose to 

represent a set of PFTs that are distinguished based on leaf form (needleleaf or broadleaf), leaf phenology (evergreen or 

deciduous), stature (trees, grasses, or shrubs), photosynthetic pathway (C3 or C4), or geographical location (tropical, 50 

temperate, or boreal). When a terrestrial biosphere model prescribes land cover rather than represents it dynamically, the 

spatial distribution of PFTs across the land surface is specified using current observations of land cover based on remote 

sensing products (National Research Council, 2008). Remote sensing products are first reclassified into the PFTs that a given 

model represents (Hartley et al., 2017). Then historical information on land use change is incorporated: crop and pasture 

areas have increased while natural vegetation area has correspondingly decreased over the past century (Chini et al., 2021). 55 

The resulting land cover forcing allows for the simulation of how deforestation and the conversion of natural vegetation to 

crop and pasture, i.e., land use change, impacts net terrestrial C sequestration (Houghton et al., 2012). Because the expansion 

of crop and pasture areas has been greater than climate-driven changes to the geographical distribution of natural vegetation 

over the historical period, prescribing land cover using a forcing that only accounts for land use change is a reasonable 

assumption for simulations over the historical period (although historical climate-driven changes to the geographical 60 

distribution of natural vegetation are not negligible (Pecl et al., 2017)). However, prescribing land cover does not capture the 

shifting ranges of different biomes driven by climate change and its subsequent impacts on the net land-atmosphere CO2 

flux. Changes to the geographical distribution of natural vegetation should be especially important for high CO2 future 
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scenarios with correspondingly strong climate warming because these scenarios exhibit the largest changes to vegetation 

productivity (Arora et al., 2020; Koven et al., 2022) and thus the largest potential changes to the ranges of different biomes. 65 

In its simplest form, the dynamic behaviour of vegetation can be classified into two aspects: vertical and horizontal. Vertical 

changes in vegetation structure include changes to leaf area index, vegetation height, rooting depth, etc. given a certain 

spatial extent. Horizontal changes in vegetation structure describe changes in this spatial extent. Global change influences 

both aspects of the dynamic behaviour of vegetation: the response of plant growth to global change drivers such as CO2 

fertilisation and climate variability (Dusenge et al., 2019; Huang et al., 2018; Wu et al., 2011), as well as range shifts of 70 

different PFTs. The range of a given PFT is modulated by competitive interactions for space and resources with other PFTs 

and by the bioclimatic limits within which a PFT can exist. Both competitive interactions and bioclimatic limits are affected 

by climate change (Lenoir and Svenning, 2015; Thomas, 2010; Walther, 2010). While a terrestrial biosphere model with 

prescribed land cover can capture how global change modulates plant growth of a given PFT within its specified range 

(vertical changes), it cannot capture accompanying climate change-driven range shifts of its PFTs (horizontal changes) aside 75 

from specified land use change. Conversely, a terrestrial biosphere model with dynamic land cover can capture both 

variation in plant growth (vertical changes) as well as range shifts (horizontal changes) driven by climate change alongside 

specified land use change. 

The Global Carbon Project produces an annual quantification of the global C budget, which includes an estimate of the 

current terrestrial C sink (i.e., the positive global atmosphere-land CO2 flux) from an ensemble of terrestrial biosphere 80 

models (Friedlingstein et al., 2022). In the most recent budget, only 3 out of the 16 contributing terrestrial biosphere models 

implemented dynamic land cover. Furthermore, only 3 out of the 11 contributing Earth System Models to the Coupled 

Climate–Carbon Cycle Model Intercomparison Project (C4MIP) within the 6th phase of the Coupled Model Intercomparison 

Project (CMIP), which coordinates the analysis of C cycle interactions, included dynamic land cover (Arora et al., 2020). 

Here, we isolate the impacts of prescribed vs. dynamic land cover by comparing two versions of the Canadian Land Surface 85 

Scheme Including Biogeochemical Cycles (CLASSIC): a version with prescribed land cover and a version with dynamic 

land cover. All other aspects of the model are identical between the two versions, including land use change, thereby 

isolating the effects of land cover implementation (prescribed vs. dynamic). CLASSIC has contributed to the Global Carbon 

Project since 2016 and CLASSIC is the land component of the Canadian Earth System Model (CanESM), which contributes 

to CMIP and the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). 90 

We first demonstrate that CLASSIC with dynamic land cover successfully reproduces the current geographical distribution 

of natural vegetation when compared to remote sensing products following a statistical framework, which we adapt for the 

first time to include an evaluation of the geographical distribution of natural vegetation. This framework can be applied 

across terrestrial biosphere models alongside standard benchmarking of energy, water, and carbon cycle variables. We then 

analyse CLASSIC simulations of Shared Socioeconomic Pathway 585 (SSP5-8.5), which describes a “fossil-fueled 95 

development scenario” from 2015 to 2100, and examine how climate change could influence the future geographical 
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distribution of natural vegetation. We identify differences between projections with prescribed land cover vs. dynamic land 

cover and examine how different land cover implementations impact the future terrestrial C sink. 

2 Methods 

2.1 CLASSIC overview 100 

The Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) (Melton et al., 2020; Seiler et al., 2021) 

is the successor to and is based on the coupled Canadian Land Surface Scheme (CLASS (Verseghy, 1991; Verseghy et al., 

1993)) and the Canadian Terrestrial Ecosystem MODEL (CTEM (Arora and Boer, 2005a; Melton and Arora, 2016)). Older 

versions of CLASSIC (under the name CLASS-CTEM) have served as the land component in the family of Canadian Earth 

System Models (CanESM), including CanESM5 which contributes to CMIP (Swart et al., 2019). 105 

The physical component of CLASSIC simulates fluxes of energy, momentum, and water (Verseghy, 1991; Verseghy et al., 

1993). The structural attributes of vegetation are characterized by leaf area index (LAI), canopy mass, vegetation height, and 

rooting depth, all of which are dynamically simulated by the biogeochemical component of CLASSIC (described below). 

The soil profile is represented by 20 soil layers, starting with 10 soil layers of 0.1 m thickness followed by soil layers of 

increasing thickness up to a soil layer of 30 m thickness for a total depth of 61.4 m. The depth of permeable soil layers and 110 

thus the depth to bedrock soil layers varies geographically and is specified based on the SoilGrids250m data set (Hengl et al., 

2017). Soil temperature and soil moisture content (liquid and frozen) are simulated for each permeable soil layer. Where the 

climate permits snow to exist, the temperature, mass, density, and albedo of a single snowpack layer are simulated. The 

physical calculations yield net radiation, soil heat flux, latent and sensible heat fluxes, evapotranspiration, and runoff at the 

land-atmosphere boundary. Each grid cell is simulated independently and there are no lateral transfers of energy or matter 115 

between grid cells. 

The biogeochemical component of CLASSIC simulates the land-atmosphere exchange of CO2 via photosynthesis, 

autotrophic respiration, heterotrophic respiration, land use change, and fire (Arora and Boer, 2005a). CLASSIC 

prognostically simulates the amount of C in vegetation, litter, and soil organic matter pools for each PFT and over the bare 

soil fraction in each grid cell. Vegetation C is represented by leaf, stem, and root components, each of which consists of 120 

structural and non-structural carbohydrate pools. Photosynthesis generates non-structural carbohydrates which are allocated 

between the non-structural leaf, stem, and root C pools. Autotrophic respiration occurs from the non-structural leaf, stem, 

and root C pools (Arora and Boer, 2005a). Non-structural C is converted to structural C within each vegetation component 

(Asaadi et al., 2018). Leaf, stem, and root turnover transfer C from the vegetation C pool to the litter C pool. In addition to 

normal leaf turnover, leaf turnover also occurs due to drought stress, cold stress, and shorter day lengths, affecting leaf 125 

phenology (Arora and Boer, 2005a). Land use change transfers C from the vegetation C pool to land use change product C 

pools (with turnover times corresponding to pulp/paper products and wood products), whereas fire emits C to the atmosphere 

and also transfers C from the vegetation C pool to the litter C pool (Arora and Boer, 2005b; Arora and Melton, 2018). 
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Decomposition transfers C from the litter C pool to the soil C pool. Finally, heterotrophic respiration occurs from both the 

litter and soil C pools (Melton et al., 2015). While CLASSIC does include a representation of nitrogen cycling (Asaadi and 130 

Arora, 2021; Kou-Giesbrecht and Arora, 2022), the interactions between C and nitrogen cycling are not considered in this 

study. 

2.2 CLASSIC land cover implementation 

Biogeochemical processes in CLASSIC are modelled for nine plant functional types (PFTs): needleleaf evergreen trees 

(NE), needleleaf deciduous trees (ND), broadleaf evergreen trees (BE), deciduous broadleaf cold trees (DBC), deciduous 135 

broadleaf dry trees (DBD), C3 crops, C4 crops, C3 grasses (C3G), and C4 grasses (C4G). These nine PFTs map directly to 

four PFTs used for simulating physical processes (needleleaf trees, broadleaf trees, crops, and grasses). When prescribed 

land cover is implemented, the time-varying fractional coverage of each PFT in each grid cell is specified by a land use 

forcing (described below). Land use change is the only driver of variation in the fractional coverage of PFTs over time. 

When crop area increases, natural vegetation area proportionally decreases. When crop area decreases, natural vegetation 140 

area proportionally increases. When dynamic land cover is implemented, the time-varying fractional coverages of C3 crops 

and C4 crops in each grid cell are specified by a land use forcing and the fractional coverages of natural PFTs in each grid 

cell evolve due to competition and mortality within the non-crop area of each grid cell. For both prescribed and dynamic 

land cover implementations, the fractional coverages of all PFTs and bare ground in a grid cell sum to 1: 

∑ 𝑓!"#$
!%$ = 1            (1) 145 

𝑓! is the fractional coverage of a given natural PFT 𝑛 ∈ {1,… ,𝑁} and 𝑓"#$ is the fractional coverage of bare ground in a 

given grid cell. Additionally, a land surface fraction for each grid cell is specified to exclude water bodies (oceans and lakes), 

glaciers, and ice sheets. 

When dynamic land cover is implemented, the fractional coverage of a natural PFT is the result of colonization and mortality 

and is described in detail in Melton & Arora (2016) and in the Supplementary Information. Competition between natural 150 

PFTs is based on modified Lotka-Volterra equations which describe the interactions between two populations using first-

order nonlinear differential equations. In this case, competition is for area in a grid cell rather than for population size. The 

colonization rate of natural PFT 𝑛 (𝑐!; day-1) is determined by its net primary productivity and leaf area index (described in 

detail in Appendix A). The mortality rate of natural PFT 𝑛 (𝑚!; day-1) is the sum of intrinsic or age-related mortality, 

mortality due to reduced growth, mortality due to fire, and mortality when a PFT exists outside its bioclimatic limits. 155 

Intrinsic or age-related mortality is determined by its maximum age (described in detail in Appendix A). Mortality due to 

reduced growth is determined by its growth rate over the previous year. Mortality due to fire is described in detail in Arora & 

Melton (2018). Area burned, which generates bare ground, depends on a PFT-specific fire spread rate (where grasses have a 

higher fire spread rate than trees, and needleleaf trees have a higher spread rate than broadleaf trees), wind speed, and soil 

moisture as well as the probability of fire occurrence (which depends on the availability of vegetation biomass as a fuel 160 



6 
 

source, the combustibility of the fuel source based on soil moisture, and the presence of an ignition source based on lightning 

and population density) and fire suppression (which depends on population density). 

Mortality when a PFT exists outside its bioclimatic limits (𝑚&'()*'+,!; day-1) ensures that a given natural PFT 𝑛 does not 

venture outside of its bioclimatic envelope. Six bioclimatic indices are used to determine the spatial range of PFTs, 

representing the physiological limits to their survival: air temperature of the coldest month, air temperature of the warmest 165 

month, aridity index (ratio of potential evaporation to precipitation), growing degree days (cumulative number of days with 

air temperature above 5°C), dry season length (number of consecutive months with precipitation less than potential 

evaporation), and precipitation surplus (difference between precipitation and potential evaporation). Each bioclimatic index 

for each grid cell is updated annually on a 25-year timescale using exponential smoothing: 

𝑋(𝑡 + 1) = 𝑋(𝑡)𝑒-$ ./0 + 𝑥(𝑡) 51 − 𝑒-$ ./0 7         (2) 170 

𝑥(𝑡) represents a bioclimatic index at year 𝑡 and 𝑋(𝑡) represents the smoothed bioclimatic index at year 𝑡. This accounts for 

time lags in the response of vegetation to climate change drivers (Wu et al., 2015). At the beginning of each time step, each 

grid cell is assigned with a small fractional coverage of each PFT (0.001). Whether, the PFT persists is determined by  

𝑚&'()*'+,!: 𝑚&'()*'+,! = 0.25 when any bioclimatic index is outside its corresponding bioclimatic limit for a given PFT and 

𝑚&'()*'+,! = 0 when all bioclimatic indices are inside their corresponding bioclimatic limits for a given PFT. Bioclimatic 175 

limits for each natural PFT are given in Table B1. These were derived by first calculating the bioclimatic indices for each 

grid cell using the CRUJRA climate dataset averaged over 1900 to 1920 (Harris et al., 2020). Then, the 1% and 99% 

quantiles of these bioclimatic indices over all grid cells for each land cover type in the Collection 5 MODIS Global Land 

Cover Type International Geosphere-Biosphere Programme (IGBP) product (Friedl et al., 2010) (time-averaged between 

2001-2010) were calculated and associated with a CLASSIC PFT. Note that this assumes that the current biome ranges are in 180 

equilibrium with the 1900-1920 climate due to the migration lag that occurs between climatic change and observed 

differences in established plant species ranges, especially in long-lived plant species such as trees (Corlett and Westcott, 

2013). While this approach accounts for slower range shifts due to climatic change, it does not account for rapid range shifts 

due to fire disturbance, which have influenced range shifts over recent decades (Macander et al., 2022; Wang et al., 2020). 

To simulate competition between PFTs, each natural PFT is given a dominance rank (𝑖) where PFTs with higher dominance 185 

ranks invade PFTs with lower dominance ranks and bare ground. Tree PFTs are given higher dominance ranks than grass 

PFTs. Within tree PFTs and within grass PFTs, a PFT with a higher 𝑐! is dominant over all PFTs with lower 𝑐!. Each PFT is 

thus ranked from 1,2, … , 𝑖 − 1, 𝑖, 𝑖 + 1,…𝑁 where the PFT with dominance rank 1 is the most dominant. Overall, the change 

in fractional coverage of a PFT with dominance rank 𝑖 is due to (1) its colonization into the areas of PFTs with lower 

dominance ranks (𝑖 + 1,… ,𝑁) and bare ground (𝑁 + 1), (2) colonization by PFTs with higher dominance ranks (𝑖, … , 𝑖 − 1) 190 

into its area, and (3) its mortality: 
12!
13
= (𝑐'𝑓'#$ +⋯+ 𝑐'𝑓" + 𝑐'𝑓"#$) − (𝑐$𝑓' +⋯+ 𝑐'-$𝑓') − 𝑚'𝑓'      (3) 
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The change in fractional coverage of bare ground is due to mortality of the PFTs and colonization of bare ground by the 

PFTs: 
12"#$
13

= ∑ 𝑚!𝑓!"
!%$ − ∑ 𝑐!𝑓"#$"

!%$           (4) 195 

The conceptual form of Equations (3) and (4) is different from the standard Lotka-Volterra equation and allows coexistence 

of PFTs (Arora and Boer, 2006). 

2.3 Simulation descriptions 

We use CLASSIC (offline) to simulate the principal aspects of the land surface energy, water, and C cycles at the global 

scale over the historical period (1851 – 2020) and over the future period (2015 – 2100) for Shared Socioeconomic Pathways 200 

585 (SSP5-8.5) at a spatial resolution of 1 ̊. Simulations are described in Table 1.   

 
Table 1. Description of simulations. Simulations analysed (S1-S5) are indicated for the corresponding time period. Corresponding 
pre-industrial spin-ups and/or historical simulations (to initialise simulations of the future period) are also indicated. 

Land cover 

implementation 

Protocol Pre-industrial 

period 

Historical period  

(1851 – 2020) 

Future period / SSP5-8.5 

(2015 – 2100)  

GLC2000 (prescribed) TRENDY S1 spin-up S1 na 

ESACCI (prescribed) TRENDY S2 spin-up S2 na 

Dynamic TRENDY S3 spin-up S3 na 

ESACCI (prescribed) ISIMIP S4 spin-up S4 historical simulation S4 

Dynamic ISIMIP S5 spin-up S5 historical simulation S5 

 205 

To evaluate dynamic land cover over the historical period (1851 – 2020), we conducted three simulations: two simulations 

with prescribed land cover (S1 and S2) and a simulation with dynamic land cover (S3). These three historical simulations 

were initialised from corresponding pre-industrial spin-ups (described below). Simulations with prescribed land cover use 

land cover forcings specifying the fractional coverage of the nine CLASSIC PFTs that are derived from two remote sensing 

products: the Global Land Cover 2000 (GLC2000) product (S1) (Bartholomé and Belward, 2005) and the European Space 210 

Agency Climate Change Initiative (ESACCI) Version 2 product (S2) (ESA, 2017). The process of generating a land cover 

forcing specifying the fractional coverage of all PFTs has three steps. First, the present-day fractional coverages of the 

model’s PFTs are obtained from a remote sensing product, which involves reclassifying the land cover classes in the remote 

sensing product to the model’s PFTs. A. Wang et al. (2006) describes how the 22 land cover categories in the GLC2000 

product are reclassified to the nine CLASSIC PFTs. L. Wang et al. (2023) show how the 37 land cover categories in the 215 

ESACCI product from 2018 are reclassified to the nine CLASSIC PFTs. Second, the fractional coverages of crop PFTs are 

replaced with values from a land use change forcing for a given year in the present day and the fractional coverages of 
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natural PFTs are adjusted accordingly such that the total fractional coverage of vegetation is unchanged in that year. Third, 

the timeseries of fractional coverages of crop PFTs from the land use change forcing is incorporated by adjusting the 

fractional coverages of natural PFTs over a given time period relative to the single-year land cover forcing generated in the 220 

previous step. These three steps are used to generate a land cover forcing specifying the fractional coverage of all model 

PFTs derived from a remote sensing product over a given time period. Simulations with dynamic land cover use land cover 

forcings that only specify the fractional coverages of crop PFTs. 

S1-S3 follow the TRENDY protocol (used for contributions to the Global Carbon Project) (Friedlingstein et al., 2022). The 

TRENDY protocol uses the merged monthly Climate Research Unit (CRU) and 6-hourly Japanese 55-year Reanalysis (JRA-225 

55) dataset from Harris et al. (2020), atmospheric CO2 forcing from Dlugokencky and Tans (2022), population density 

forcing from HYDE3.3 (Klein Goldewijk et al., 2017), and land use change forcing from the LUH2-GCB2022 (Land-Use 

Harmonization 2) dataset (Chini et al., 2021; Hurtt et al., 2020; Klein Goldewijk et al., 2017). S1-S3 were initialised from 

corresponding pre-industrial spin ups (Table 1). We conducted different pre-industrial spin ups for each simulation that used 

the corresponding land cover implementation. Pre-industrial simulations used atmospheric CO2, land cover, and population 230 

density forcings corresponding to the year 1851. Pre-industrial simulations used meteorological forcings from 1901 to 1920 

repeatedly. We ran the pre-industrial spin up until the C pools came into equilibrium. A threshold of 0.05 Pg C yr-1 for the 

global net atmosphere-land CO2 flux was used to assess if equilibrium was achieved. Note that all simulations exclude 

Antarctica and Greenland. 

 235 

To examine prescribed vs. dynamic land cover over the future period (2015 – 2100) for SSP5-8.5 (Riahi et al., 2017), we 

conducted two simulations: one simulation with prescribed land cover from the ESACCI-derived land cover product (S4) 

and one simulation with dynamic land cover (S5). These future simulations for SSP5-8.5 were initialised from the end of 

their corresponding historical simulations, which were in turn initialised from their corresponding pre-industrial spin-ups 

(described below). S4 and S5 use bias-corrected meteorological forcings from CanESM5. They use atmospheric CO2, land 240 

use change, and population density forcings from CMIP and the Inter-Sectoral Impact Model Intercomparison Project 

(ISIMIP) (Buchner and Reyer, 2021; Warszawski et al., 2014). Our study uses a single meteorological forcing (from the 

corresponding model CanESM5). The effects of different meteorological forcings have been explored elsewhere (Arora et 

al., 2023) as have the effects of bias correction (Seiler et al., in prep). S4 and S5 were initialised from the end of their 

corresponding historical simulations, which were in turn initialised from their corresponding pre-industrial spin-ups (Table 245 

1). We conducted different pre-industrial spin ups for each simulation. Pre-industrial simulations used atmospheric CO2, land 

use change, and population density forcings corresponding to the year 1851. Pre-industrial simulations used pre-industrial 

meteorological forcings provided by ISIMIP. 
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2.4 Model evaluation 

We evaluated historical simulations using the Automated Model Benchmarking R (AMBER) package developed by Seiler et 250 

al. (2021), which quantifies model performance in reproducing observation-based datasets using a skill score system that is 

based on ILAMB (Collier et al., 2018). Five scores compare model output to a reference dataset for a given variable, 

assessing the simulated time-mean bias (Sbias), monthly centralised root-mean-square-error (Srmse), seasonality (Sphase), inter-

annual variability (Siav), and spatial distribution (Sdist) in comparison to the observation-based dataset. Scores are 

dimensionless and range from 0 to 1, where higher values indicate better model performance. The overall score for each 255 

variable (Soverall) is calculated as: 

𝑆(4567** = mean?𝑆&'78, 𝑆6+85 , 𝑆9:785 , 𝑆'74, 𝑆1'83@        (5) 

For variables with more than one observation-based dataset, we calculated a benchmark score for the observation-based 

datasets, which quantifies how well the independently derived observation-based datasets agree with each other, thereby 

providing an estimate of the uncertainty of the observation-based datasets themselves. The benchmark score was calculated 260 

by iteratively comparing pairs of independently derived observation-based datasets, where one observation-based dataset is 

treated as model output and the other observation-dataset is treated as the reference dataset. If the two observation-based 

datasets were the same, the benchmark score would be 1. The calculation of each score and benchmark scores is described in 

detail in Seiler et al. (2022).  

We adapted this statistical framework, which operates at a grid cell scale, to evaluate land cover fraction for each natural 265 

PFT within a grid cell. For simulations with dynamic land cover, we evaluated the land cover fraction for each natural PFT 

against both the GLC2000-derived land cover product and the ESACCI-derived land cover product. We compared the 

GLC2000-derived land cover product and the ESACCI-derived land cover product to obtain a benchmark score that 

quantifies the uncertainty of these land cover products. Note that a qualitative assessment of dynamic land cover at a spatial 

resolution of 2.81 ̊ in CLASSIC was presented in Melton & Arora (2016). 270 

Additionally, we evaluated the standard set of energy, water, and C cycle variables following Seiler et al. (2022). 

Specifically, we evaluated aboveground biomass C (AGB), surface albedo (ALBS), area burned (BURNTAREA), soil C 

(CSOIL), vegetation C (CVEG), fire emissions (FIRE), gross primary productivity (GPP), soil heat flux (HFG), latent heat 

flux (HFLS), sensible heat flux (HFSS), leaf area index (LAI), runoff (MRRO), soil moisture (MRSLL), net biome 

productivity (NBP), net ecosystem exchange (NEE), ecosystem respiration (RECO), net surface long wave radiation (RLS), 275 

net surface radiation (RNS), net surface shortwave radiation (RSS), and snow water equivalent (SNW). Observation-based 

datasets used for evaluation are summarized in Table B2. 
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3 Results 

3.1 Historical simulations and evaluation 

CLASSIC with dynamic land cover successfully reproduces the global area of trees, grasses, and total natural vegetation 280 

over the historical period, falling within the range of ESACCI-derived and GLC2000-derived land cover products as shown 

in Figure 1. Simulated global tree, grass, and natural vegetation areas are closer to the ESACCI-derived land cover product 

than the GLC2000-derived land cover product for the present day (2000-2020). Over the historical period, simulated global 

natural vegetation area decreases due to increasing crop area, i.e., land use change (Figure B1). Land use change is the only 

driver of variation in natural vegetation area in the ESACCI-derived and GLC2000-derived land cover products. CLASSIC 285 

with dynamic land cover simulates a smaller decrease in natural vegetation area than that attributable to land use change. 

This is because decreasing natural vegetation area due to land use change is partially offset by increasing natural vegetation 

area driven by stimulated plant growth from CO2 fertilisation and climate change over the historical period. 

 
Figure 1. Natural vegetation area over the historical period. a. Global area of natural vegetation, trees, and grasses simulated by 290 
CLASSIC with dynamic land cover in comparison to ESACCI-derived and GLC2000-derived land cover products. Natural 
vegetation fraction per grid cell in the b. ESACCI-derived land cover product, c. GLC2000-derived land cover product, and d. 
simulated by CLASSIC with dynamic land cover. Simulations and land cover products are averaged over 2000-2020 in b-d. 
Natural vegetation includes seven natural PFTs (described in Section 2.2), excluding crop area and bare ground. 
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CLASSIC with dynamic land cover also broadly reproduces the latitudinal distribution of the natural PFTs in comparison to 295 

ESACCI-derived and GLC2000-derived land cover products as shown in Figure 2. However, there remain some differences 

between simulations and observations. CLASSIC does not simulate needleleaf evergreen trees between 20°N and 40°N 

whereas observations suggest that this PFT exists at these latitudes (e.g., high-elevation tropical and subtropical coniferous 

forests). Rather, CLASSIC simulates broadleaf deciduous cold trees at these latitudes whereas observations suggest that this 

PFT declines between 40°N and 20°N. Furthermore, CLASSIC slightly overestimates C4 grass area and slightly 300 

underestimates C3 grass area in the Northern Hemisphere. Reasons for these disagreements are discussed below. 
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Figure 2. Latitudinal distributions of each natural plant functional type (PFT) simulated by CLASSIC with dynamic land cover in 
comparison to ESACCI-derived and GLC2000-derived land cover products. a. Evergreen needleleaf, b. deciduous needleleaf, c. 
evergreen broadleaf, d. deciduous broadleaf cold, e. deciduous broadleaf dry, f. C3 grass, and g. C4 grass. Simulations and land 305 
cover products are averaged over 2000-2020. 

Both CLASSIC with prescribed land cover (simulated with an ESACCI-derived and GLC2000-derived land cover products) 

and CLASSIC with dynamic land cover reasonably capture the primary C, water, and energy cycle variables (Figure B2). 

The agreement between CLASSIC simulations and observations is quantified by scores of model performance in 
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reproducing observation-based datasets for each biogeochemical and biophysical variable. These scores indicate that 310 

CLASSIC with dynamic land cover performed similarly to CLASSIC with prescribed land cover (Figure B3). Figures 3a and 

3b show model scores (averaged across all CLASSIC simulations, with both prescribed and dynamic land cover) plotted 

against benchmark scores for biogeochemical and biophysical variables, respectively. Figure 3 shows the correspondence 

between model performance in reproducing observation-based datasets (i.e., model scores) and the uncertainty of the 

observation-based datasets themselves (i.e., benchmark scores). Model scores for both versions of CLASSIC (prescribed and 315 

dynamic land cover) and benchmark scores are similar, falling close to the 1:1 line, which indicates that model performance 

is comparable to the uncertainty of the observation-based datasets themselves. Both versions of CLASSIC perform slightly 

better for biophysical variables (Figure 3b) than for biogeochemical variables (Figure 3a). Finally, both CLASSIC with 

prescribed and dynamic land cover simulate the terrestrial C sink over the historical period reasonably well in comparison to 

other models in the Global Carbon Project (Friedlingstein et al., 2022) (Figure B4). 320 
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Figure 3. Model performance in reproducing observation-based datasets (model scores) relative to the uncertainty of the 
observation-based datasets themselves (benchmark scores) for a. biogeochemical variables, b. biophysical variables, and c. land 
cover fractions of each natural plant functional type (PFT). Model scores are averaged across simulations of CLASSIC with 
prescribed land cover (with an ESACCI-derived land cover forcing and a GLC2000-derived land cover forcing) and dynamic land 325 
cover for biogeochemical and biophysical variables. Whiskers indicate the maximum and minimum model scores. Abbreviations 
for C, water, and energy variables and observation-based datasets are described in the Methods. Abbreviations for PFTs are 
evergreen needleleaf (EN), deciduous needleleaf (DN), evergreen broadleaf (EB), deciduous broadleaf cold (DBC), deciduous 
broadleaf dry (DBD), C3 grass (C3G), and C4 grass (C4G). 
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When dynamic land cover is implemented in CLASSIC, the ability of CLASSIC to reproduce land cover fractions of each 330 

natural PFT can be assessed alongside C, water, and energy variables as shown in Figure 3c. Additionally, benchmark scores 

can be calculated for the land cover fractions of each natural PFT by comparing the ESACCI-derived land cover product to 

the GLC2000-derived land cover product. Model scores tend to be lower than benchmark scores, especially for tropical PFTs 

(broadleaf deciduous dry trees and C4 grasses). For these PFTs uncertainty is introduced because remote sensing products do 

not distinguish between cold and dry broadleaf deciduous trees and do not distinguish between C3 and C4 grasses. This 335 

distinction is made during the reclassification of the land cover categories to the nine CLASSIC PFTs and introduces some 

subjectivity (Wang et al., 2023b). Specifically, deciduous trees above 30° in both hemispheres are assumed to be cold 

deciduous, deciduous trees below 20° in both hemispheres are assumed to be dry deciduous, and the fraction of trees that are 

cold vs. dry deciduous varies linearly between 0 and 1 with latitude for deciduous trees between 20° and 30°. The separation 

of grasses into C3 and C4 is based on the time-invariant global product from (Still et al., 2003). 340 

3.2 Future simulations 

For SSP5-8.5, CLASSIC with dynamic land cover simulates increasing global area of trees, grasses, and total natural 

vegetation (Figure 4a). Global natural vegetation area decreases in the ESACCI-derived land cover product due to land use 

change (increasing crop area), which is again the only driver of variation in natural vegetation area in the ESACCI-derived 

land cover product (Figure 4a, Figure B1). Decreasing natural vegetation area due to land use change occurs primarily in 345 

South America, Africa, and Asia (Figure 4b). CLASSIC with dynamic land cover simulates increasing natural vegetation 

area because the loss of natural vegetation area due to land use change is offset by increasing natural vegetation area 

especially at high latitudes (Figure 4c). 
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Figure 4. Change in natural vegetation area for SSP5-8.5 (2015 – 2100). a. Change in global area of natural vegetation, trees, and 350 
grasses simulated by CLASSIC with dynamic land cover in comparison to the ESACCI-derived land cover product. Change in 
natural vegetation fraction per grid cell b. in the ESACCI-derived land cover product and c. simulated by CLASSIC with dynamic 
land cover. Differences reflect the change between the averages calculated over 1995-2015 and 2080-2100. Only grid cells with a 
significant temporal trend are shown (P < 0.05; assessed with a Mann-Kendall trend test). Figure B5 shows the change in fraction 
per grid cell for each PFT simulated by CLASSIC with dynamic land cover. Figure B13 shows the absolute value of the natural 355 
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vegetation fraction per grid cell averaged over 1995-2015 and averaged over 2080-2100 simulated by CLASSIC with prescribed 
land cover and CLASSIC with dynamic land cover. 

At high latitudes, CLASSIC with dynamic land cover simulates increasing areas of needleleaf evergreen trees, broadleaf 

deciduous cold trees, and C3 and C4 grasses, expanding into what was previously bare ground (Figure B5). This corresponds 

to increasing temperatures at high latitudes (Figure B6). In particular, C4 grasses, which are currently primarily found at low 360 

latitudes, expand into high latitudes due to their dependence on temperature (Luo et al., 2024). At low latitudes, CLASSIC 

with dynamic land cover simulates decreasing natural vegetation area in South America but variably decreasing and 

increasing natural vegetation area in Africa and Asia. In the Amazon, the area of broadleaf evergreen trees decreases while 

the areas of C3 and C4 grasses increase (Figure B5). This corresponds to decreasing precipitation in this region (Figure B6). 

Conversely, in Africa and Asia, the area of broadleaf evergreen trees increases while the areas of C3 and C4 grasses decrease 365 

(Figure B5). This corresponds to increasing precipitation in this region (Figure B6). As an exception, in the Sahel, the areas 

of C3 and C4 grasses increase, expanding into what was previously bare ground (Figure B5). This also corresponds to 

increasing precipitation in this region (Figure B6).   

CLASSIC with prescribed land cover (simulated with an ESACCI-derived land cover product) and CLASSIC with dynamic 

land cover both simulate increasing NPP at higher latitudes for SSP5-8.5 (Figure 5a-b). NPP increases to a greater extent at 370 

higher latitudes in the simulation with dynamic land cover because of increasing natural vegetation area, especially that of 

broadleaf trees at the expense of needleleaf trees (Figures 5c-f and 6a-c). NPP changes are similar at lower latitudes in both 

versions of CLASSIC (Figure 5a-b). Both versions of CLASSIC project decreasing NPP in the Amazon (Figure 5a-b). NPP 

decreases in simulations with prescribed land cover simulations due to decreasing precipitation in the Amazon (Figure B6). 

NPP decreases slightly less in the simulation with dynamic land cover because decreasing tree area and NPP are offset by 375 

increasing grass area and NPP in the Amazon (Figures 5c-f and 6d-f). In the Sahel, NPP increases slightly in the simulation 

with dynamic land cover but decreases slightly in the simulation with prescribed land cover (Figure 5a-b). NPP decreases in 

simulations with prescribed land cover due to land use change in the Sahel (Figure 6h). NPP increases slightly in the 

simulation with dynamic land cover because of increasing grass area, outweighing the effects of NPP in the Sahel (Figures 

5c-f and 6g-i). Both versions of CLASSIC simulate similar increases in vegetation C (Figure B7 and B8). CLASSIC with 380 

dynamic land cover simulates a smaller decrease in soil C due to increased natural vegetation area at high latitudes (Figure 

B7 and B9). 

CLASSIC dynamically simulates fire (Arora and Melton, 2018). When prescribed land cover is implemented, fire reduces 

vegetation biomass density, whereas when dynamic land cover is implemented, fire both reduces vegetation biomass density 

and creates bare ground that can then be colonized by a different plant functional type. CLASSIC with dynamic land cover 385 

simulates slightly higher area burned and fire CO2 emissions than CLASSIC with prescribed land cover at the global scale 

due to higher natural vegetation area (Figure B10), but spatial patterns are relatively similar between both versions of 

CLASSIC (Figure B11 and B12). In particular, neither version of CLASSIC simulates substantial changes in high latitude 

fires which CLASSIC underestimates (Arora and Melton, 2018). CLASSIC with dynamic land cover simulates lower fire in 
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the Amazon and higher fire in the Sahel, corresponding to lower and higher natural vegetation area in the Amazon and Sahel, 390 

respectively. This suggests that there are minor differences in fire occurrence between different PFTs which should be 

improved in future model development. 

 
Figure 5. Change in net primary productivity (NPP) simulated by CLASSIC with prescribed land cover (with an ESACCI-derived 
land cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). ab. Total NPP, cd. tree NPP, and ef. grass 395 
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NPP. Differences reflect the change between the average over 1995-2015 and 2080-2100. Only grid cells with a significant temporal 
trend are shown (P < 0.05; assessed with a Mann-Kendall trend test). 

 
Figure 6. Change in natural vegetation area and net primary productivity (NPP) at high latitudes, the Amazon, and the Sahel by 
CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing) and CLASSIC with dynamic land cover for 400 
SSP5-8.5 (2015 – 2100). a. Map of high latitudes. b. Change in global area of natural vegetation, broadleaf trees, needleleaf trees, 
and grasses in high latitudes. c. Change in NPP in high latitudes. d. Map of the Amazon. e. Change in global area of natural 
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vegetation, broadleaf trees, needleleaf trees, and grasses in the Amazon. f. Change in NPP in the Amazon. d. Map of the Sahel. e. 
Change in global area of natural vegetation, broadleaf trees, needleleaf trees, and grasses in the Sahel. f. Change in NPP in the 
Sahel. 405 

Net biome productivity (NBP), i.e., the net land-atmosphere CO2 flux (which includes photosynthesis, autotrophic and 

heterotrophic respiration, fire emissions, and land use change emissions), increases in CLASSIC simulations of SSP5-8.5 

with both prescribed and dynamic land cover (Figure 7a). The increase in NBP is almost twofold greater in the simulation 

with dynamic land cover (5.28 Pg C yr-1 averaged over 2080 – 2100) than in the simulation with prescribed land cover (2.29 

Pg C yr-1 averaged over 2080 – 2100). At the global scale, this increase in NBP is driven by increasing NPP (Figure 7b-c) 410 

which is primarily due to CO2 fertilisation in both versions of CLASSIC. In CLASSIC with dynamic land cover, there is a 

stronger NPP increase at high northern latitudes (Figure 7c). NPP increases at low latitudes in both versions of CLASSIC 

because increasing NPP in Africa and Asia outweighs decreasing NPP in South America. The change in NPP at low latitudes 

is similar between both versions of CLASSIC despite changing tree vs. grass areas as described above due to offsetting 

effects. Surface albedo decreases due to snow loss driven by increasing temperature in both versions of CLASSIC (Figure 415 

7d), but this decrease is slightly stronger at high northern latitudes in CLASSIC with dynamic land cover due to the 

expansion of natural vegetation into higher latitudes (Figure 7e). Evapotranspiration increases in both versions of CLASSIC 

(Figure 7f), but this increase is slightly stronger at high northern latitudes in CLASSIC with dynamic land cover due to the 

expansion of natural vegetation into higher latitudes (Figure 7g). 
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 420 
Figure 7. Change in a. net biome productivity (NBP), bc. net primary productivity (NPP), de. surface albedo, and fg. 
evapotranspiration simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing) and 
CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). For the latitudinal distributions, CLASSIC simulations were 
averaged over 2080-2100. Thin lines indicate the annual value and thick lines indicate the moving average over 10 years. 

4. Discussion 425 

Dynamic land cover is rarely implemented in terrestrial biosphere models (e.g., in only 3 out of 11 contributing models to 

C4MIP within the 6th phase of CMIP) and the simulated geographical distribution of natural vegetation has not yet been 
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evaluated robustly as it lacked the methodology to do so. The Global Carbon Project uses a statistical framework to evaluate 

the ability of its models to reproduce observations of the C, water, and energy cycles – the International Land Model 

Benchmarking (ILAMB) framework (Collier et al., 2018), which has since been expanded to include a method to quantify 430 

the uncertainty of the observation-based datasets themselves (Seiler et al., 2022). We build on this to introduce a framework 

with which the dynamically simulated geographical distribution of natural vegetation can be quantitatively evaluated against 

observations. We use this framework to show that CLASSIC with dynamic land cover successfully simulates the 

geographical distribution of its natural PFTs for the present day, reproducing observations (Figures 1-3). This framework can 

be applied across terrestrial biosphere models to evaluate dynamic land cover alongside evaluations of the principal C, water, 435 

and energy cycle processes. 

Future projections for Shared Socioeconomic Pathway 5-8.5 (“fossil-fueled development scenario”, SSP5-8.5) differ 

significantly between simulations with prescribed and dynamic land cover because in the latter the geographical distribution 

of natural vegetation is able to respond to changing environmental conditions. The net land-atmosphere CO2 flux (or net 

biome productivity, NBP) is nearly twice as large in the simulation with dynamic land cover (5.28 Pg C yr-1 averaged over 440 

2080 – 2100) than the simulation with prescribed land cover (2.29 Pg C yr-1 averaged over 2080 – 2100) (Figure 7). This 

difference is attributed to three important range shifts that are only simulated when dynamic land cover is implemented: (1) 

the expansion of trees into high latitudes, which increases NBP, (2) the recession of trees accompanied by the expansion of 

grasses in the Amazon, which decreases NBP, and (3) the expansion of grasses into the Sahel, which increases NBP (Figures 

5, 6, and 7). These responses occurred over the historical period as well but to a much smaller extent (Figure 1). We now 445 

discuss each of these range shifts in greater detail. 

“Greening of the Arctic” describes the expansion of vegetation into high-latitude regions which occurs as previously 

uninhabitable regions become habitable due to increasing temperatures (Chen et al., 2011; Elmendorf et al., 2012; Myers-

Smith et al., 2020; Pearson et al., 2013; Piao et al., 2020; Tape et al., 2006). While terrestrial biosphere models with 

prescribed land cover capture increasing plant growth at high latitudes within their present-day range due to increasing 450 

temperatures (Wang et al., 2023a), these models are not able to simulate range shifts. Our results suggest these range shifts 

could make a sizeable contribution to the terrestrial C sink via C sequestration in vegetation and soils at high latitudes due to 

the northward expansion of trees and grasses. Fire alongside rising temperature is known to drive a transition from 

needleleaf trees to broadleaf trees (Hisano et al., 2021). Because broadleaf trees are less flammable than needleleaf trees this 

transition could reduce fire activity (Baltzer et al., 2021; Johnstone and Chapin, 2006; Mack et al., 2021). These processes 455 

are not represented explicitly here but warrant further study, especially given their importance and significant biases across 

land surface models at high latitudes (Braghiere et al., 2023; Wang et al., 2021). Although the greening of the Arctic drives 

increased terrestrial C sequestration at high latitudes, it also drives other important feedbacks to the climate system, such as 

reduced albedo (Chapin et al., 2005) and enhanced evapotranspiration (Swann et al., 2010). 

“Amazonian dieback” describes the combination of deforestation and the increased mortality of trees in the Amazon 460 

rainforest due to changing climate in the region (Malhi et al., 2008; Parry et al., 2022). Tree mortality occurs as previously 
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habitable regions become inhabitable due to the sensitivity of trees to drought and heat stress (Aleixo et al., 2019; Phillips et 

al., 2009). While the direct effects of reduced precipitation and elevated temperature on plant growth as well as deforestation 

are captured by terrestrial biosphere models with prescribed land cover, these models are incapable of simulating transitions 

from forest to grassland. Fire modulates these transitions, as grasses rapidly regenerate post-fire and are more flammable 465 

than trees, thereby intensifying fire activity (Davidson et al., 2012). Finally, Amazonian dieback self-amplifies via feedbacks 

to the climate system, as decreased forest cover decreases evapotranspiration which could amplify regional drought (Zemp et 

al., 2017). The effects of these feedbacks as well as the feedbacks associated with the greening of the Artic are not evaluated 

in our offline simulations and warrant further study. 

Finally, the “greening of the Sahel” describes the expansion of vegetation into the Sahara which occurs as previously 470 

uninhabitable regions become habitable due to increasing precipitation (Brandt et al., 2015; Herrmann et al., 2005; Olsson et 

al., 2005). This range shift is not captured in terrestrial biosphere models with prescribed land cover. However, there is large 

uncertainty in future projections of precipitation in this region (Monerie et al., 2020). While less explored than the previous 

two effects, greening of the Sahel is regionally important and could make a non-trivial contribution to the global C, water, 

and energy cycles, warranting further study.  475 

These responses are consistent with those of other terrestrial biosphere models that implement dynamic land cover. Both 

Scholze et al. (2006) and Alo & Wang (2008) simulated increasing tree area at high latitudes and the replacement of trees 

with grasses in the Amazon. Sitch et al. (2008), which compared four models with dynamic land cover, found similar results, 

although the magnitudes of the responses differed between models. Port et al. (2012) conducted and examined a fully 

coupled simulation with a land model with dynamic land cover and similarly observed both greening of the Arctic and 480 

Amazonian dieback. Because there is large uncertainty in climate projections in the Sahel region, greening of the Sahel is 

often but not always simulated (Sitch et al., 2008). Our results follow the consistent pattern simulated by these other models, 

but our unique experimental design allows us to isolate the impact of dynamic land cover implementation (vs. prescribed 

land cover implementation) and compare it against the effects of other global change drivers. 

5. Conclusions 485 

Our results illustrate the potential effects of range shifts alongside variation in plant growth that is driven by climate change. 

While all terrestrial biosphere models account for the influence of global change drivers such as CO2 fertilisation, increasing 

temperatures, and variable precipitation regimes on plant growth, terrestrial biosphere models with prescribed land cover 

cannot capture range shifts that are driven by climate change. However, few terrestrial biosphere models incorporate 

dynamic land cover. Importantly, the shifting ranges of biomes have critical feedbacks to climate change as well as critical 490 

consequences for biodiversity and human well-being (Pecl et al., 2017) alongside their consequences to the global C cycle. 
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Appendix A: Detailed description of dynamic land cover in CLASSIC. 

When dynamic land cover is implemented, the fractional coverage of a natural PFT is the result of colonization and mortality 

and is described in detail in Melton & Arora (2016). The colonization rate of PFT 𝑛 (𝑐!; day-1) is determined by its net 

primary productivity (NPP): 495 

𝑐! = minDmaxD𝜆$,!, 𝜆.,!H , 0.1H𝑁𝑃𝑃!
$

8%&',);<=>?../,;AB>C*+,,),/.?DD
      (A1) 

𝑁𝑃𝑃! is the NPP of PFT 𝑛 and 𝐶45E,! is the vegetation C biomass of PFT 𝑛. 𝑠879,! is a factor for converting vegetation C 

biomass to seedling C biomass of PFT 𝑛 (unitless) (Table B3). 𝜆$,! and 𝜆.,! determine the fraction of NPP that is used for 

spatial expansion within a given grid cell of PFT 𝑛 (unitless): 

𝜆$,! = L

0,																																																																𝐿𝐴𝐼! ≤ 𝐿𝐴𝐼+'!,!
0.1 FGH)-FGH-!),)

FGH-&.,)-FGH-!),)
, 																																																		𝐿𝐴𝐼+'!,! < 𝐿𝐴𝐼! < 𝐿𝐴𝐼+7I,!

0.1,																																																													𝐿𝐴𝐼+7I,! ≤ 𝐿𝐴𝐼!

    (A2) 500 

𝜆.,! = S
0,																																																																																							𝐿𝐴𝐼! ≤ 	0.25𝐿𝐴𝐼+'!,!
cosh 50.115?𝐿𝐴𝐼! − 0.25𝐿𝐴𝐼+'!,!@7 − 1,													0.25𝐿𝐴𝐼+'!,! < 𝐿𝐴𝐼!

     (A3) 

𝐿𝐴𝐼+'!,! and 𝐿𝐴𝐼+7I,! are minimum and maximum leaf area index thresholds, respectively, of PFT 𝑛 (m2 m-2) (Table B3). 

The mortality rate of PFT 𝑛 (𝑚!; day-1) is the sum of intrinsic or age-related mortality (𝑚'!36,!; day-1), mortality due to 

reduced growth (𝑚E5,!; day-1), mortality due to fire (𝑚1'83,!; day-1), and mortality when a PFT exists outside its bioclimatic 

limits (𝑚&'()*'+,!; day-1): 505 

𝑚! = 𝑚'!36,! +𝑚E5,! +𝑚1'83,! +𝑚&'()*'+,!        (A4) 

𝑚'!36,! = 1 − exp Z-J.K?/
G-&.,)

[          (A5) 

𝑚E5,! =
+,+,-&.,)	

$#MN??	+/
OE	C0 P	(;<=[?,E5)])

          (A6) 

𝑚1'83,! = 𝜍6,!
2012)+3,)

2)
           (A7) 

𝐴+7I,! is the maximum age of PFT 𝑛 (yr) (Table B3). 𝑚E5,+7I,! is the maximum growth-related mortality rate occurring 510 

when no growth occurs of PFT 𝑛 (day-1) (Table B3). 𝑔𝑒! is growth efficiency over the previous year of PFT 𝑛 (kg C m-2): 

𝑔𝑒! =
∆C%,)#∆C2,)
F-&.,)

            (A8) 

∆𝐶8,! is the stem C increment over the previous year of PFT 𝑛 (kg C m-2), ∆𝐶6,! is the root C increment over the previous 

year of PFT 𝑛 (kg C m-2), and 𝐿+7I,! is the maximum LAI over the previous year of PFT 𝑛 (m2 m-2). 𝜍6,! is the susceptibility 

to stand replacing fire of PFT 𝑛 (fraction) (Table B3). 𝑓&V6!51,! is the fractional area burned within a day of PFT 𝑛 and 515 

depends on wind speed and soil moisture as well as the probability of fire occurrence (which depends on the availability of 

vegetation biomass as a fuel source, the combustibility of the fuel source based on soil moisture, and the presence of an 
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ignition source based on lightning and population density) and suppression (which depends on population density). This is 

described in detail in Arora & Melton (2018). 

Six bioclimatic indices are used to determine the spatial range of PFTs, representing the physiological limits to their 520 

survival: air temperature of the coldest month, air temperature of the warmest month, aridity index (ratio of potential 

evaporation to precipitation), growing degree days (cumulative number of days with air temperature above 5°C), dry season 

length (number of consecutive months with precipitation less than potential evaporation), and precipitation surplus 

(difference between precipitation and potential evaporation). Bioclimatic indices for each grid cell are updated annually on a 

25-year timescale using exponential smoothing: 525 

𝑋(𝑡 + 1) = 𝑋(𝑡)𝑒-$ ./0 + 𝑥(𝑡) 51 − 𝑒-$ ./0 7         (A9) 

𝑥(𝑡) represents a bioclimatic index at year 𝑡 and 𝑋(𝑡) represents the smoothed bioclimatic index at year 𝑡. This accounts for 

time lags in the response of vegetation to climate change drivers (Wu et al., 2015). At the beginning of each time step, each 

grid cell is assigned with a small fractional coverage of each PFT (0.001). Whether, the PFT persists is determined by  

𝑚&'()*'+,!: 𝑚&'()*'+,! = 0.25 when any bioclimatic index is outside its corresponding bioclimatic limit for a given PFT and 530 

𝑚&'()*'+,! = 0 when all bioclimatic indices are inside their corresponding bioclimatic limits for a given PFT. Bioclimatic 

limits for each PFT are given in Table B1. These were derived by first calculating the bioclimatic indices for each grid cell 

using the CRUJRA climate dataset averaged over 1900 to 1920 (Harris et al., 2020). Then, the 1% and 99% quantiles of 

these bioclimatic indices over all grid cells for each land cover type in the Collection 5 MODIS Global Land Cover Type 

International Geosphere-Biosphere Programme (IGBP) product (Friedl et al., 2010) were calculated and associated with a 535 

CLASSIC PFT. Note that this assumes that the current biome ranges are in equilibrium with the 1900-1920 climate.  

Each natural PFT is given a dominance rank (𝑖 ) where PFTs with higher dominance ranks invade PFTs with lower 

dominance ranks and bare ground. Natural PFTs cannot invade crop area. Tree PFTs are given higher dominance ranks than 

grass PFTs. Within tree PFTs and within grass PFTs, a PFT with a higher 𝑐! is dominant over all PFTs with lower 𝑐!. Each 

PFT is thus ranked from 1,2, … , 𝑖 − 1, 𝑖, 𝑖 + 1,…𝑁 where the PFT with dominance rank 1 is the most dominant. Overall, the 540 

change in fractional coverage of a PFT with dominance rank 𝑖 is due to (1) its colonization into the areas of PFTs with lower 

dominance ranks (𝑖 + 1,… ,𝑁) and bare ground (𝑁 + 1), (2) colonization by PFTs with higher dominance ranks (𝑖, … , 𝑖 − 1) 

into its area, and (3) its mortality: 

 
12!
13
= (𝑐'𝑓'#$ +⋯+ 𝑐'𝑓" + 𝑐'𝑓"#$) − (𝑐$𝑓' +⋯+ 𝑐'-$𝑓') − 𝑚'𝑓'      (A10) 545 

 

The change in fractional coverage of bare ground is due to mortality of the PFTs and colonization of bare ground by the 

PFTs: 
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Appendix B: Supplemental figures and tables. 

 
Figure B1: Crop area over the historical period (1850 – 2015) and SSP5-8.5 (2015 – 2100) from the LUH2-GCB2022 (Land-Use 
Harmonization 2) dataset (Chini et al., 2021; Hurtt et al., 2020; Klein Goldewijk et al., 2017).  
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  555 
Figure B2: Latitudinal distributions of a. gross primary productivity (GPP), b. aboveground biomass C, c. soil C, d. area burned, 
e. fire CO2 emissions, f. soil moisture, g. surface net latent heat flux, h. surface net sensible heat flux, i. net surface radiation, and j. 
surface albedo simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing and a GLC2000-
derived land cover forcing) and CLASSIC with dynamic land cover in comparison to present-day observations. CLASSIC 
simulations were averaged over 2000-2020. Observation-based datasets are described in the Methods. Figure B2 shows the scores 560 
of model performance in reproducing observation-based datasets for each variable. 
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Figure B3: Scores of model performance in reproducing observation-based datasets of principal C, water, and energy variables as 
well as land cover fractions of each natural plant functional type (PFT) for simulations of CLASSIC with prescribed land cover 
(with an ESACCI-derived land cover forcing and a GLC2000-derived land cover forcing) and dynamic land cover. Abbreviations 565 
for C, water, and energy variables and observation-based datasets are described in the Methods. Abbreviations for PFTs are 
evergreen needleleaf (EN), deciduous needleleaf (DN), evergreen broadleaf (EB), deciduous broadleaf cold (DBC), deciduous 
broadleaf dry (DBD), C3 grass (C3G), and C4 grass (C4G). 
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Figure B4: Net biome productivity (NBP) simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover 570 
forcing and a GLC2000-derived land cover forcing) and CLASSIC with dynamic land cover. Boxes indicate estimates from the 
suite of models in the Global Carbon Project where dark horizontal lines indicate the mean and the extent indicates one standard 
deviation (Friedlingstein et al., 2022). Thin lines indicate the annual value and thick lines indicate the moving average over 10 
years. 
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  575 
Figure B5: Fraction per grid cell in the historical period (averaged over 1995-2015), in SSP5-8.5 (averaged over 2080-2100), and 
change between the historical period and SSP5-8.5 in for each plant functional type (PFT) simulated by CLASSIC with dynamic 
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land cover. a. Evergreen needleleaf, b. deciduous needleleaf, c. evergreen broadleaf, d. deciduous broadleaf cold, e. deciduous 
broadleaf dry, f. C3 grass, and g. C4 grass. Differences reflect the change between the average over 1995-2015 and 2080-2100. 

 580 
Figure B6: Temperature and precipitation in ab. the historical period (averaged over 1995-2015), cd. SSP5-8.5 (averaged over 
2080-2100), and ef. change between the historical period and SSP5-8.5. 
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Figure B7: Change in ab. vegetation C and cd. soil C simulated by CLASSIC with prescribed land cover (with an ESACCI-derived 
land cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). For the latitudinal distributions, CLASSIC 585 
simulations were averaged over 2080-2100. Thin lines indicate the annual value and thick lines indicate the moving average over 
10 years. 
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Figure B8: Change in vegetation C simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover 
forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). ab. Total vegetation C, cd. tree vegetation C, and ef. 590 
grass vegetation C. Differences reflect the change between the average over 1995-2015 and 2080-2100. 
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Figure B9: Change in soil C simulated by a. CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing) 
and b. CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). Differences reflect the change between the average over 
1995-2015 and 2080-2100. 595 
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Figure B10: Change in ab. area burned and cd. fire CO2 emissions by CLASSIC with prescribed land cover (with an ESACCI-
derived land cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). For the latitudinal distributions, 
CLASSIC simulations were averaged over 2080-2100. Thin lines indicate the annual value and thick lines indicate the moving 
average over 10 years. 600 
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Figure B11: Change in area burned simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover 
forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). ab. Total area burned, cd. tree area burned, and ef. 
grass area burned. Differences reflect the change between the average over 1995-2015 and 2080-2100. 
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 605 
Figure B12: Change in fire CO2 emissions simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land 
cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015 – 2100). ab. Total fire CO2 emissions, cd. tree fire CO2 
emissions and ef. grass fire CO2 emissions. Differences reflect the change between the average over 1995-2015 and 2080-2100. 
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Figure B13: Natural vegetation fraction per grid cell ab. in the ESACCI-derived land cover product and cd. simulated by 610 
CLASSIC with dynamic land cover over ac. the historical period (averaged over 1995-2015) and bd. for SSP5-8.5 (averaged over 
2080-2100). 

 
Table B1: Parameters associated with bioclimatic indices. 

Parameter EN DN EB DBC DBD C3G C4G 
Maximum air temperature of 
the coldest month 

-2 -27  17    

Minimum air temperature of 
the coldest month 

  1 -33 15   

Maximum air temperature of 
the warmest month 

28 19  30    

Minimum air temperature of 
the warmest month 

      20 

Maximum aridity index 8 8 8 8 8 8 8 
Minimum aridity index     0.5   
Minimum growing degree 
days 

370 340 1320 430 4920   

Maximum dry season length   8     
Minimum dry season length     5   
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Precipitation surplus 150 150 150 150 150   
 615 
Table B2: Observation-based datasets used in AMBER. Described in detail in (Seiler et al., 2022). Datasets are globally grided or 
in situ (specified). 

Variable Variable 
abbreviation 

Observation-based dataset 

Aboveground biomass carbon AGB FOSXue (in situ) (Schepaschenko et al., 2019; Xue et al., 2017) 
GEOCARBON (Avitabile et al., 2016; Santoro et al., 2015) 
Zhang (Zhang and Liang, 2020) 

Albedo ALBS CERES (Kato et al., 2013) 
GEWEXSRB (Stackhouse et al., 2011) 
MODIS (Strahler and Muller, 1999) 

Area burned BURNTAREA ESACCI (Chuvieco et al., 2018) 
GFED4S (Giglio et al., 2010) 

Soil carbon CSOIL HWSD (Todd-Brown et al., 2013; Wieder, 2014) 
SG250m (Hengl et al., 2017) 

Vegetation carbon CVEG Huang2021 (Huang et al., 2021) 
Fire emissions FIRE CT2019 (Jacobson et al., 2020) 
Gross primary productivity GPP FLUXCOM (Jung et al., 2020) 

GOSIF (Li and Xiao, 2019) 
MODIS (Zhang et al., 2017) 
FLUXNET (in situ) (Pastorello et al., 2020) 

Soil heat flux HFG CLASSr (Hobeichi et al., 2020) 
FLUXNET (in situ) (Pastorello et al., 2020) 

Latent heat flux HFLS CLASSr (Hobeichi et al., 2020) 
FLUXCOM (Jung et al., 2019) 
FLUXNET (in situ) (Pastorello et al., 2020) 

Sensible heat flux HFSS CLASSr (Hobeichi et al., 2020) 
FLUXCOM (Jung et al., 2019) 
FLUXNET (in situ) (Pastorello et al., 2020) 

Leaf area index LAI AVHRR (Claverie et al., 2016) 
CEOS (in situ) (Garrigues et al., 2008) 
Copernicus (Verger et al., 2014) 
MODIS (Myneni et al., 2002) 

Streamflow MRRO CLASSr (Hobeichi et al., 2020) 
GRDC (in situ) (Dai and Trenberth, 2002) 

Soil moisture MRSLL ESA (Liu et al., 2011) 
Net biome productivity NBP CAMS (Agustí-Panareda et al., 2019) 

CarboScope (Rödenbeck et al., 2018) 
CT2019 (Jacobson et al., 2020) 

Net ecosystem exchange NEE FLUXNET (in situ) (Pastorello et al., 2020) 
Ecosystem respiration RECO FLUXNET (in situ) (Pastorello et al., 2020) 
Net surface long wave radiation RLS CERES (Kato et al., 2013) 

GEWEXSRB (Stackhouse et al., 2011) 
Net surface radiation RNS CERES (Kato et al., 2013) 

CLASSr (Hobeichi et al., 2020) 
FLUXCOM (Jung et al., 2019) 
FLUXNET (Pastorello et al., 2020) 
GEWEXSRB (Stackhouse et al., 2011) 
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Net surface shortwave radiation RSS CERES (Kato et al., 2013) 
GEWEXSRB (Stackhouse et al., 2011) 

Snow water equivalent SNW Mortimer (Mortimer et al., 2020) 
 
Table B3: Parameters associated with the calculation of colonization and mortality rates for each PFT. 

Parameter EN DN EB DBC DBD C3G C4G 
𝑠879,! 0.30 0.10 0.10 0.14 0.30 0.10 0.10 
𝐿𝐴𝐼+'!,! 1.0 0.25 1.5 1.5 1.5 0.5 0.5 
𝐿𝐴𝐼+7I,! 4.0 2.0 6.0 6.0 6.0 3.0 3.0 
𝐴+7I,! 250 400 600 250 500 0 0 
𝑚E5,+7I,! 0.005 0.005 0.005 0.005 0.005 0.1 0.1 
𝜍6,! 0.20 0.20 0.50 0.20 0.15 0.25 0.25 

Code availability 620 

The source code for CLASSIC is available on the CLASSIC community Zenodo page 

(https://zenodo.org/communities/classic?q=&l=list&p=1&s=10&sort=newest). AMBER is available 
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