Preprints
https://doi.org/10.5194/egusphere-2023-2328
https://doi.org/10.5194/egusphere-2023-2328
23 Oct 2023
 | 23 Oct 2023

Chemical Properties and Single Particle Mixing State of Soot Aerosol in Houston during the TRACER Campaign

Ryan Farley, James Lee, Laura-Hélèna Rivellini, Alex Lee, Rachael Dal Porto, Christopher Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine Benedict, Allison Aiken, Manvendra Dubey, and Qi Zhang

Abstract. A high-resolution soot particle aerosol mass spectrometer (SP-AMS) was used to selectively measure refractory black carbon (rBC) and its associated coating material using both the ensemble size-resolved mass spectral mode and the event trigger single particle (ETSP) mode in Houston, Texas in summer 2022. This study was conducted as part of the Department of Energy Atmospheric Radiation Measurement (ARM) program’s Tracking Aerosol Convection Interactions Experiment (TRACER) field campaign. The study revealed an average (± 1s) rBC concentration of 103 ± 176 ng m-3. Additionally, the coatings on the BC particles were primarily composed of organics (59 %; 219 ± 260 ng m-3) and sulfate (26 %; 94 ± 55 ng m-3).  Positive matrix factorization (PMF) analysis of the ensemble mass spectra of BC-containing particles resolved four distinct types of soot aerosol, including an oxidized organic aerosol (OOABC,PMF) factor associated with processed primary organic aerosol, an inorganic sulfate factor (SO4,BC,PMF), an oxidized rBC factor (O-BCPMF), and a mixed mineral dust/biomass burning aerosol factor with significant contribution from potassium (K-BBBC,PMF).  Additionally, K-Means clustering analysis of the single particle mass spectra identified eight different clusters, including soot particles enriched in hydrocarbon like organic aerosol (HOABC,ETSP), sulfate (SO4,BC,ETSP), two types of rBC, OOA (OOABC,ETSP), chloride (ClBC,ETSP) and nitrate (NO3,BC,ETSP). The single particle measurements demonstrate substantial variation in BC coating thickness with coating-to-rBC mass ratios ranging from 0.1 to 100. The mixing state index (χ), which denotes the degree of homogeneity of the soot aerosol, varied from 4 to 94 % with a median of 40 %, indicating that the aerosol population lies in between internal and external mixing but has large temporal and source type variability.  In addition, a significant fraction of BC-containing particles, a majority enriched with oxidized organics and sulfate, exhibit sufficiently high κ values and diameters conducive to activation as cloud nuclei under atmospherically relevant supersaturation conditions.  This finding bears significance in comprehending the activation of rBC-containing particles as cloud droplets and the origins of CCN in urban areas. Our analysis highlights the complex nature of soot aerosol and underscore the need to comprehend its variability across different environments for accurate assessment of climate change.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

03 Apr 2024
Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024,https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Ryan Farley, James Lee, Laura-Hélèna Rivellini, Alex Lee, Rachael Dal Porto, Christopher Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine Benedict, Allison Aiken, Manvendra Dubey, and Qi Zhang

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2328', Anonymous Referee #1, 08 Dec 2023
    • AC1: 'Reply on RC1', Qi Zhang, 06 Feb 2024
  • RC2: 'Comment on egusphere-2023-2328', Anonymous Referee #2, 12 Jan 2024
    • AC1: 'Reply on RC1', Qi Zhang, 06 Feb 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2328', Anonymous Referee #1, 08 Dec 2023
    • AC1: 'Reply on RC1', Qi Zhang, 06 Feb 2024
  • RC2: 'Comment on egusphere-2023-2328', Anonymous Referee #2, 12 Jan 2024
    • AC1: 'Reply on RC1', Qi Zhang, 06 Feb 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Qi Zhang on behalf of the Authors (06 Feb 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (12 Feb 2024) by Stefania Gilardoni
AR by Qi Zhang on behalf of the Authors (19 Feb 2024)

Journal article(s) based on this preprint

03 Apr 2024
Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024,https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Ryan Farley, James Lee, Laura-Hélèna Rivellini, Alex Lee, Rachael Dal Porto, Christopher Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine Benedict, Allison Aiken, Manvendra Dubey, and Qi Zhang
Ryan Farley, James Lee, Laura-Hélèna Rivellini, Alex Lee, Rachael Dal Porto, Christopher Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine Benedict, Allison Aiken, Manvendra Dubey, and Qi Zhang

Viewed

Total article views: 605 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
378 205 22 605 47 12 15
  • HTML: 378
  • PDF: 205
  • XML: 22
  • Total: 605
  • Supplement: 47
  • BibTeX: 12
  • EndNote: 15
Views and downloads (calculated since 23 Oct 2023)
Cumulative views and downloads (calculated since 23 Oct 2023)

Viewed (geographical distribution)

Total article views: 592 (including HTML, PDF, and XML) Thereof 592 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer.  Single particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state.  A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.