Preprints
https://doi.org/10.5194/egusphere-2023-2284
https://doi.org/10.5194/egusphere-2023-2284
08 Dec 2023
 | 08 Dec 2023

Spatial Disparities of Ozone Pollution in the Sichuan Basin Spurred by an Extreme Heatwave

Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang

Abstract. Under the influence of climate change, the increasing occurrence of extreme weather events, such as heatwaves, has led to an enhanced frequency of ozone (O3) pollution issues. In August 2022, the Sichuan Basin (SCB), a typical large-scale geographical terrain located in southwestern China, experienced the most severe heatwave over the last 20 years. The heatwave led to substantial disparities in O3 levels across the region. Here, by integrating observations, machine learnings and numerical simulations, we aim to understand the diverse O3 formation mechanisms in two mega cities, Chengdu (western location) and Chongqing (eastern location). Observational data showed that Chengdu experienced a consecutive 17-day period of O3 exceedance, in contrast to Chongqing, where O3 concentrations remained below the standard. Meteorological and precursor factors were assessed, spotlighting high temperatures, intense solar radiation, and overnight accumulative pollutants as key contributors to O3 concentrations. The interplay of isoprene, temperature, and O3, alongside the observation-based box model and MEGAN simulations, underscored the significant role of intensified biogenic VOCs (BVOCs) on O3 formations. Interestingly, Chongqing exhibited nearly double the BVOCs emissions of Chengdu, yet contributed less to O3 concentrations. This discrepancy was addressed through CMAQ-DDM simulations and satellite diagnosis by investigating the O3-NOx-VOCs sensitivity. Notably, Chengdu displayed a VOCs-driven sensitivity, while Chongqing showed a transitional regime. Moreover, the regional transport also played a pivotal role in the spatial divergence of O3 pollution. Cross-regional transport predominantly influenced Chongqing (contributing ~80%), whereas Chengdu was mainly affected by the emissions within the basin. The local accumulated pollutants gave rise to the atmospheric oxidizing capacity, resulting in a substantial photochemical contribution to O3 levels (49.9 ppbv/hour) in Chengdu. This comparison of the difference provides the insights into the complex interplay of meteorology, natural emissions, and anthropogenic sources during heatwaves, guiding the necessity of targeted pollution control measures in regional scales.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

08 Mar 2024
Spatial disparities of ozone pollution in the Sichuan Basin spurred by extreme, hot weather
Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang
Atmos. Chem. Phys., 24, 3029–3042, https://doi.org/10.5194/acp-24-3029-2024,https://doi.org/10.5194/acp-24-3029-2024, 2024
Short summary
Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2284', Anonymous Referee #1, 28 Dec 2023
    • AC1: 'Reply on RC1', Nan Wang, 03 Feb 2024
  • RC2: 'Comment on egusphere-2023-2284', Anonymous Referee #2, 31 Jan 2024
    • AC2: 'Reply on RC2', Nan Wang, 03 Feb 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2284', Anonymous Referee #1, 28 Dec 2023
    • AC1: 'Reply on RC1', Nan Wang, 03 Feb 2024
  • RC2: 'Comment on egusphere-2023-2284', Anonymous Referee #2, 31 Jan 2024
    • AC2: 'Reply on RC2', Nan Wang, 03 Feb 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Nan Wang on behalf of the Authors (03 Feb 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (05 Feb 2024) by Tim Butler
AR by Nan Wang on behalf of the Authors (06 Feb 2024)

Journal article(s) based on this preprint

08 Mar 2024
Spatial disparities of ozone pollution in the Sichuan Basin spurred by extreme, hot weather
Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang
Atmos. Chem. Phys., 24, 3029–3042, https://doi.org/10.5194/acp-24-3029-2024,https://doi.org/10.5194/acp-24-3029-2024, 2024
Short summary
Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang
Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang

Viewed

Total article views: 388 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
282 88 18 388 28 8 11
  • HTML: 282
  • PDF: 88
  • XML: 18
  • Total: 388
  • Supplement: 28
  • BibTeX: 8
  • EndNote: 11
Views and downloads (calculated since 08 Dec 2023)
Cumulative views and downloads (calculated since 08 Dec 2023)

Viewed (geographical distribution)

Total article views: 375 (including HTML, PDF, and XML) Thereof 375 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In the scorching August 2022 heatwave, China's Sichuan Basin saw a stark contrast in ozone (O3) levels between Chengdu and Chongqing. The regional disparities were studied considering meteorology, precursors, photochemistry and transportation. The study highlighted the importance of tailored pollution control measures and underlined the necessity for region-specific strategies to combat O3 pollution in a regional scale.