Preprints
https://doi.org/10.5194/egusphere-2023-2098
https://doi.org/10.5194/egusphere-2023-2098
26 Sep 2023
 | 26 Sep 2023

cfr (v2023.9.14): a Python package for climate field reconstruction

Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins

Abstract. Climate field reconstruction (CFR) refers to the estimation of spatiotemporal climate fields (such as surface temperature) from a collection of pointwise paleoclimate proxy datasets. The climate fields can provide rich information on climate dynamics and provide an out-of-sample validation of climate models. However, most CFR workflows are complex and timeconsuming, as they involve: (i) preprocessing of the proxy records, climate model simulations, and instrumental observations, (ii) application of one or more statistical methods, and (iii) analysis and visualization of the reconstruction results. Historically, this process has lacked transparency and accessibility, limiting reproducibility and experimentation by non-specialists. This article presents an open-source and object-oriented Python package called cfr that aims to make CFR workflows easy to understand and conduct, saving climatologists from technical details and facilitating efficient and reproducible research. It provides user-friendly utilities for common CFR tasks such as proxy and climate data analysis and visualization, proxy system modeling, and modularized workflows for multiple reconstruction methods, enabling methodological intercomparisons within the same framework. The package is supported with an extensive documentation of the application interface (API) and a growing number of tutorial notebooks illustrating its usage. As an example, we present two cfr-driven reconstruction experiments using the PAGES 2k temperature database: applying the last millennium reanalysis (LMR) paleoclimate data assimilation (PDA) framework and the Graphical Expectation-Maximization (GraphEM) algorithm, respectively.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

30 Apr 2024
cfr (v2024.1.26): a Python package for climate field reconstruction
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024,https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Climate field reconstruction encompasses methods that estimate the evolution of climate in space...
Share