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Abstract. Climate field reconstruction (CFR) refers to the estimation of spatiotemporal climate fields (such as surface tem-

perature) from a collection of pointwise paleoclimate proxy datasets. [..2 ]Such reconstructions can provide rich information

on climate dynamics and provide an out-of-sample validation of climate models. However, most CFR workflows are com-

plex and time-consuming, as they involve: (i) preprocessing of the proxy records, climate model simulations, and instrumental

observations, (ii) application of one or more statistical methods, and (iii) analysis and visualization of the reconstruction5

results. Historically, this process has lacked transparency and accessibility, limiting reproducibility and experimentation by

non-specialists. This article presents an open-source and object-oriented Python package called cfr that aims to make CFR

workflows easy to understand and conduct, saving climatologists from technical details and facilitating efficient and repro-

ducible research. [..3 ]cfr provides user-friendly utilities for common CFR tasks such as proxy and climate data analysis and

visualization, proxy system modeling, and modularized workflows for multiple reconstruction methods, enabling methodologi-10

cal intercomparisons within the same framework. The package is supported with an extensive documentation of the application

programming interface (API) and a growing number of tutorial notebooks illustrating its usage. As an example, we present

two cfr-driven reconstruction experiments using the PAGES 2k temperature database: applying the last millennium reanalysis

(LMR) paleoclimate data assimilation (PDA) framework and the Graphical Expectation-Maximization (GraphEM) algorithm,

respectively.15

1 Introduction

Paleoclimate reconstructions provide critical context for recent changes and out-of-sample validation of climate models (Masson-

Delmotte et al., 2013). Site-based reconstructions have been used to infer climate change with the assumption that site-based
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paleoclimate records (i.e., proxies) can represent the regional or even global climate variations to some extent (e.g., Shakun

et al., 2012; Marcott et al., 2013), yet such approaches may lead to conclusions biased to specific sites (Bova et al., 2021;20

Osman et al., 2021). Climate field reconstruction (CFR), in contrast, aims to optimally combine the available proxy data and

infer [..4 ]multivariate climate variability over [..5 ]an entire domain of interest, hence alleviating the biases in site-based re-

construction methods[..6 ]. It has become the emerging approach to studying spatiotemporal climate history and model-data

comparisons over the past 2,000 years (e.g. Tingley et al., 2012; Neukom et al., 2019a; Tierney et al., 2020; Zhu et al., 2020;

Osman et al., 2021; King et al., 2021; Zhu et al., 2022).25

Existing CFR methods can be classified into three main categories. The first category is based on regression models, which

fit climate variables (e.g., temperature, pressure, precipitation, and so on) onto proxy observations using some variant of least

squares (e.g., Mann et al., 1998, 1999; Evans et al., 2002; Cook et al., 2004, 2010; Tingley et al., 2012; Smerdon and Pollack,

2016). A more formal approach is based on Bayesian hierarchical models, which explicitly model the various levels of the

relationship linking climate processes to proxy observations, and invert the proxy-climate relation via Bayes’ theorem (e.g.,30

Tingley and Huybers, 2010a, b, 2013; Christiansen and Ljungqvist, 2017; Shi et al., 2017). Both approaches rely on the

covariance structure between proxies and climate variables that is estimated from observational data over a calibration period.

The third is based on paleoclimate data assimilation (PDA, e.g., Dirren and Hakim, 2005; Goosse et al., 2006b; Ridgwell

et al., 2007; Steiger and Hakim, 2016; Hakim et al., 2016; Tardif et al., 2019), which follows a similar idea to the previous

approaches, but with a critical difference that the proxy-climate covariance matrix is estimated from climate model simulations35

instead of observational data, as such spatial, multivariate relationships are available and subject to dynamical constraints. As

a result, PDA methods can, in principle, estimate any field simulated in the model prior, though the reconstruction quality will

be a function of how strongly those variables can be constrained by paleo observations.

Since some CFR methods have been shown to depend sensitively on the input data (Wang et al., 2015), it is imperative

to apply more than one method to the same problem to establish a result’s robustness. This has heretofore been difficult, as40

most CFR workflows are complex, possibly involving the selection and processing of proxy records, the processing of grid-

ded climate model simulation and instrumental observation data, the calibration of proxy system models (PSMs, Evans et al.,

2013), the setup and execution of the specific reconstruction algorithms, as well as the validation and visualization of the recon-

struction results. Each of these steps can lead to a long decision tree (Bürger et al., 2006; Büntgen et al., 2021), complicating

comparisons. Furthermore, these steps require a comprehensive knowledge of proxies, data analysis and modeling, reconstruc-45

tion methods, as well as scientific programming and visualization, and can be obscure and error-prone for climatologists not

familiar with [..7 ]all of them. Here we present a Python package called cfr that is designed to make CFR workflows easy to

understand and perform, with the aim of improving the efficiency and reproducibility of CFR-related research.

The paper is organized as follows: Sect. 2 presents the design philosophy of the package. Sect. 3 provides a primer for

the two classes of reconstruction methods presently included in the package. Sect. 4 introduces the architecture and major50
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modules. Sect. 5 and 6 describe the reconstruction workflows of two methods: paleoclimate data assimilation and graphical

expectation-maximization, respectively. A summary and an outlook are provided in Sect. 7.

2 The cfr design philosophy

cfr aims to provide intuitive and effective workflows for climate field reconstruction with the following features:

Reproducible Computational Narratives. Although a traditional script-based style is also supported, cfr is natively de-55

signed to be used in the context of reproducible computational narratives known as Jupyter notebooks (Kluyver et al., 2016),

which provides an interactive programming laboratory for data analysis and visualization, and has become the new standard

for analysis-driven scientific research.

Intuitive. cfr is coded in the object-oriented programming (OOP) style, which provides intuitive ways to manipulate

data objects. For instance, each proxy record object (ProxyRecord) supports a collection of methods for analysis and vi-60

sualization[..8 ]; proxy record objects can be [..9 ]added together (by the operator “+”) to form a proxy database object

(ProxyDatabase) that supports another collection of methods specific to a proxy database. [..10 ]So-called “method cas-

cading” is also supported [..11 ]to allow for smooth processing of the data objects in one line of code combining multiple

processing steps.

Flexible. cfr provides multiple levels of modularization. It supports object-specific workflows, which provide in-depth65

operations of the data objects, as well as workflows specific to reconstruction tasks, enabling macroscopic manipulations of

the reconstruction-related tasks.

Community-based. cfr is built upon community efforts on (paleoclimate) data analysis, modeling, and visualization, in-

cluding but not limited to NumPy (van der Walt et al., 2011), SciPy (Virtanen et al., 2020), Pandas (McKinney, 2010), Xarray

(Hoyer and Hamman, 2017), Matplotlib (Hunter, 2007), Cartopy (Met Office, 2010), Seaborn (Waskom, 2021), Plotly (Plotly70

Technologies Inc., 2015), Statsmodels (Seabold and Perktold, 2010), Pyleoclim (Khider et al., 2022), and PRYSM (Dee et al.,

2015). This makes the codebase of cfr not only concise and efficient, but also ready for grassroots open development.

User-friendly. cfr is designed to be easy to install and use. It is supported with an extensive documentation on the installa-

tion and the essential application programming interface (API), as well as a growing number of tutorial notebooks illustrating

its usage. In addition, the commonly used proxy databases and gridded climate data for CFR applications can be [..12 ]remotely75

loaded from the cloud with cfr’s data fetching functionality.

3 Reconstruction Methods

At the moment, cfr supports two classes of reconstruction methods, though it is designed to accommodate many more.
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3.1 Offline Paleoclimate Data Assimilation (PDA)

In recent years, paleoclimate data assimilation (PDA) has provided a novel way to reconstruct past climate variations (Jones and80

Widmann, 2004; Goosse et al., 2006a; Gebhardt et al., 2008; Widmann et al., 2010; Goosse et al., 2010; Annan and Hargreaves,

2013; Steiger et al., 2014; Hakim et al., 2016; Franke et al., 2017; Acevedo et al., 2017; Steiger et al., 2018; Shi et al., 2019;

Tierney et al., 2020; Osman et al., 2021; King et al., 2021; Lyu et al., 2021; Zhu et al., 2022; Valler et al., 2022; Annan et al.,

2022; Fang et al., 2022). PDA proceeds by drawing from a prior distribution of climate states, which it updates by comparison

with observations (Wikle and Berliner, 2007). The prior comes from physics-based model simulations, typically from general85

circulation models experiments covering past intervals (e.g. Otto-Bliesner et al., 2016).

The observations, in this case, are the values of climate proxies, which indirectly sense the climate field(s) of interest (e.g.

surface [..13 ]temperature, precipitation, wind speed). The link between latent climate states and paleo proxy observations is

provided by observation operators (one for each proxy type), which in this case are called proxy system models (PSMs, Evans

et al., 2013). PSMs are low-order representations of the processes that translate climate conditions to the physical or chemical90

observations made on various proxy archives, such as tree rings, corals, ice cores, lake and marine sediments, or cave deposits

(speleothems).

cfr implements a version of a data assimilation algorithm known as an offline ensemble Kalman filter (EnKF), popularized

in the paleoclimate context by Steiger et al. (2013); Hakim et al. (2016); Tardif et al. (2019). The code for the EnKF solver is

derived from the Last Millennium Reanalysis (LMR) codebase (https://github.com/modons/LMR) and was streamlined with95

utilities from the cfr package. The output of this algorithm is a time-evolving distribution (the “posterior”) quantifying the

probability of particular climate states over time.

PDA can reconstruct as many climate fields as are present in the prior, though they will not be equally well constrained by

the observations. Prior values are usually obtained by drawing n (100 to 200) samples at random from a model simulation at

the outset. This precludes sampling variations, ensuring that all variability in the posterior is driven by the observations.100

Uncertainty quantification is carried out by random sampling of a subset of the proxy set (typically 75%) for separate

training and validation. This process is typically repeated MC (20-50) times, yielding so many Monte-Carlo “iterations” of the

reconstruction, each of which contains a unique set of n samples from the prior. The posterior is therefore composed of contains

n×MC trajectories, typically numbering in the thousands. For scalar indices like the global mean surface temperature or the

North Atlantic Oscillation index, the entire ensemble is exported. However, for climate fields, this added dimension would105

yield unacceptably large files. As a compromise, for each field variable, cfr by default exports the ensemble mean of the n

reconstructions during each Monte-Carlo iteration, and the final output thus contains MC ensemble members. In case the full

ensemble is needed, cfr also provides a switch to export the entire n×MC members of the reconstructed fields.

The framework treats each target year for reconstruction in a standalone manner, i.e. the reconstruction of a certain

year will not affect that of the others. This design is a key feature of offline DA. It alleviates the issue of non-uniform110

temporal data availability and facilitates the parallel reconstruction of multiple years.
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3.2 Graphical Expectation Maximization (GraphEM)

GraphEM (Guillot et al., 2015, hereafter G15) is a variant of the popular Regularized Expectation-Maximization (RegEM)

algorithm introduced by Schneider (2001), and popularized in the paleoclimate reconstruction context by Michael Mann and

co-authors (Rutherford et al., 2005; Mann et al., 2007; Mann et al., 2008, 2009; Emile-Geay et al., 2013a, b). Like RegEM,115

GraphEM mitigates the problems posed to the traditional EM algorithm (Dempster et al., 1977) by the presence of rank-

deficient covariance matrices, due the "large p, small n" problem: climate fields are observed over large grids (e.g. a 5◦ × 5◦

global grid contains nearly 2500 grid points) but a comparatively short time (say 170 annual samples for the period 1851-

2020). GraphEM addresses this issue by exploiting the conditional independence relations inherent to a climate field (Vaccaro

et al., 2021): namely, surface temperature at a given gridpoint is conditionally independent of the vast majority of the rest of120

the grid, except for a handful of neighbors, typically a fraction of a percent of the total grid size. Effectively, this reduces the

dimensionality of the problem, to the point that the estimation is well-posed, and the various submatrices of the covariance

matrix Σ are invertible and well estimated.

The degree of regularization is determined by the density of non-zero entries in the inverse covariance matrix Ω, which can

be [..14 ]used to construct a graph adjacency matrix (Lauritzen, 1996). The more zero entries in this matrix, the sparser the125

graph, and the more damped the estimation. The fuller the graph, the more connections are captured between distant locales,

but the more potential there is for a non-invertible covariance matrix, resulting in unphysical values of the reconstructed field.

Therefore, the quality of the GraphEM estimation hinges on an appropriate choice of graph, which is a compromise between

the two poles described above.

[..15 ]In practice, it is helpful to split Ω into three parts:130

ΩFF stands for “field-field”, and encodes covariances intrinsic to a given field, for instance covariance between temper-

ature at different grid points.

ΩFP stands for “field-proxy”, and encodes the way the proxies covary with the target field (here, temperature).

ΩPP stands for “proxy-proxy”, and encodes how the values of one proxy may be predictive of another.

This last part is the identity matrix, because a proxy cannot provide any more information about another proxy than the135

underlying climate field can (Guillot et al., 2015). Therefore, the only parts of Ω that need be specified are ΩFF and ΩFP .

cfr supports two ways to do so:

Neighborhood graphs are the simplest method, identifying as neighbors all gridpoints that lie within a certain radius (say,

1000 km) of a given location. The smaller the radius, the sparser the graph; the larger the radius, the fuller the graph.

Neighborhood graphs take no time to compute, but their structure is fairly rigid, as its sole dependence on distance means140

that it cannot exploit anisotropic features like land/ocean boundaries, orography, or teleconnection patterns.
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Graphical LASSO (GLASSO) is an ℓ1 penalized likelihood method introduced by Friedman et al. (2008) in the context of

high-dimensional covariance estimation. A major advantage of GLASSO is that it can extract non-isotropic depen-

dencies from a climate field (Vaccaro et al., 2021). In cfr, [..16 ]the level of regularization is controlled by [..17 ]two

sparsity parameters, which explicitly [..18 ]target the proportion of non-zero entries in Ω (see G15 for details): sp_FF145

controls the sparsity of submatrix ΩFF , and sp_FP controls the sparsity of submatrix ΩFP . The smaller the sparsity

[..19 ]parameters, the sparser the graph, and the more damped the estimate. [..20 ]

G15 found that for suitable choices of the sparsity [..21 ]parameters, the GLASSO approach yielded much better estimates

of the temperature field than the neighborhood graph method. However, the GLASSO approach has two main challenges: (1)

the graph optimization can be computationally intensive and (2) it requires a complete data matrix to operate. In the case of150

paleoclimate reconstructions, this means that proxy series and instrumental observations of the climate field of interest must

not contain any missing values over the entire calibration period (e.g. 1850-2000).

To address the first challenge, cfr uses a greedy algorithm to find the optimal [..22 ]sp_FP and sp_FF, as proposed by G15.

To address the second challenge, we use GraphEM with neighborhood graphs to obtain a first guess for the climate field, use

it to run GLASSO and obtain a more flexible graph, which is then used within GraphEM on the original (incomplete) data155

matrix (Section 6). Another advantage of this method is that it provides GraphEM (an iterative method) with a reasonable first

guess for the parameters of the distribution (µ0,Σ0), which can considerably speed up convergence. We call this approach the

"hybrid" method in cfr.

3.3 Generalization

The cfr framework is designed to be quite general, and can in principle accommodate any CFR method. PDA and GraphEM160

are only two of the methods used, for instance, in Neukom et al. (2019b), which are themselves a subset of all possible CFR

methods. The two options included at this stage, based on completely different assumptions and methodologies, provide a way

to test the method-dependence of a given result. This is critical, as some CFR methods have been shown to depend sensitively

on the input data (Wang et al., 2015). More methods will be added into the package in subsequent versions. We also welcome

of contributions from the community for the inclusion of more other Python-based CFR methods. A contributing guide can be165

accessed at: https://fzhu2e.github.io/cfr (Zhu et al., 2024).
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4 The cfr architecture

To make CFR workflows intuitive and flexible, cfr takes [..23 ]an object-oriented programming (OOP) approach and defines

Python classes describing and organizing the essential data objects along with their connections, such as proxy records, proxy

databases, gridded climate fields, as well as the PSMs and reconstruction method solvers, under different modules, which are170

described in the following sections.

4.1 proxy: proxy data processing and visualization

The proxy module contains a ProxyRecord class and a ProxyDatabase class, providing a collection of operation methods

for proxy data processing and visualization, which is fundamental for paleoclimate data analysis.

The ProxyRecord class provides a structure to store, process, and visualize a proxy record. The essential attributes and175

methods are listed in Table 1. For instance, suppose we have a ProxyRecord object named pobj, then calling pobj.plot()

will visualize the proxy time series along with its location depicted on a map (Fig. 1). Basic metadata stored as its attributes

will be displayed on the plot, including the proxy ID, the location in latitude and longitude, the proxy type, and the proxy

variable with the unit, if available. There are methods for basic processing: calling pobj.slice() will slice the record based

on the given timespan (while “index slicing” is also supported, please refer to the notebook tutorial: https://fzhu2e.github.io/180

cfr/notebooks/proxy-ops.html#Slice-a-ProxyRecord (Zhu et al., 2024) for the details), calling pobj.annualize() will annu-

alize/seasonalize the record based on the specified list of months, and calling pobj.center() or pobj.standardize() will

center or standardize the value axis of the record. There are also methods related to proxy system modeling: the get_clim()

method helps to get the grid point value from a gridded climate field nearest to the record, after which the get_pseudo()

method can be called to generate the pseudoproxy estimate. To support intuitive conversions between data objects, multiple185

ProxyRecord objects can be added together with the “+” operator to form a ProxyDatabase that we introduce in the next

section (i.e., pdb = pobj1 + pobj2 + ...). [..24 ]
23removed: the
24removed: In addition, with the fetch method, proxy databases can be conveniently fetched from the cloud. For instance, pdb =

cfr.ProxyDatabase.fetch('PAGES2kv2') will remotely load the PAGES 2k phase 2 database (PAGES 2k Consortium, 2017), and pdb =

cfr.ProxyDatabase.fetch('pseudoPAGES2k/ppwn_SNRinf_rta') will fetch and load the base version of the “pseudoPAGES2k” database (Zhu et al.,

2023a, b). Its argument can also be an arbitrary URL to a supported file stored in the cloud to support flexible loading of the data. If the fetch method is called

without an argument, the supported predefined entries will be printed out to give a hint to the users.
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Table 1. The essential attributes and methods of cfr.ProxyRecord.

Attributes Description Methods Description

pid The unique proxy ID. plot() Plot the record time series.

time The time axis. slice() Slice the record based on a give timespan.

value The value axis. + Combine multiple ProxyRecord’s as a ProxyDatabase.

ptype The proxy type. annualize() Annualize/seasonalize the proxy record.

lat, lon, elev The latitude, longitude, and elevation. get_clim() Get climate data nearest to the record.

seasonality The seasonality. get_pseudo() Generate the pseudoproxy estimate.

dt The median of time differences. center() Center the record against a reference timespan.

tags A tag set for filtering purposes. standardize() Standardize the value axis of the record.
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Figure 1. A visualization example of a coral Sr/Ca record using cfr.ProxyRecord.plot().

The ProxyDatabase class provides a structure to organize multiple ProxyRecord objects at once. The essential attributes

and methods are listed in Table 2. For example, suppose we have a ProxyDatabase object named pdb, then calling pdb.plot()

will visualize the proxy database on a static map (Fig. 2 top), along with the count of the records by proxy type if the argument190

plot_count=True is set (Fig. 2 middle). In contrast, calling pdb.plotly() will visualize the proxy database on an interac-

tive map that allows query of the location and proxy type of each record by hovering a mouse pointer (Fig. 2 bottom). The

from_df() and to_df() methods allow data input and output in the form of a pandas.DataFrame, which is a more common

format for tabular data. The filter() method offers a handy tool to filter the proxy database in flexible ways, such as by proxy

types, latitude/longitude ranges, center location and radius distance, and arbitrary tag combinations. For more details, please195

refer to the notebook tutorial on this topic: https://fzhu2e.github.io/cfr/notebooks/pp2k-pdb-filter.html (Zhu et al., 2024). To
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support intuitive conversions between data objects, multiple ProxyRecord objects and/or ProxyDatabase objects can be added

together with the “+” operator to form a ProxyDatabase (i.e., pdb = pdb1 + pobj1 + ...), and multiple ProxyRecord

objects can be removed from a ProxyDatabase with the “−” operator (i.e., pdb = pdb1 - pobj1 - ...). ProxyDatabase

also comes with find_duplicates() and squeeze_dups() to locate and remove duplicated records when adding multiple200

databases together. In addition, with the fetch method, the commonly used proxy databases can be conveniently fetched

from the cloud. For instance, pdb = cfr.ProxyDatabase.fetch('PAGES2kv2') will remotely load the PAGES 2k phase

2 database (PAGES 2k Consortium, 2017), and pdb = cfr.ProxyDatabase.fetch('pseudoPAGES2k/ppwn_SNRinf_rta')

will fetch and load the base version of the “pseudoPAGES2k” database (Zhu et al., 2023a, b). Its argument can also be an

arbitrary URL to a supported file stored in the cloud to support flexible loading of the data. If the fetch method is called205

without an argument, the supported predefined entries will be printed out to give a hint to the users.

Table 2. The essential attributes and methods of cfr.ProxyDatabase.

Attributes Description Methods Description

records The dictionary of the records. plot() Plot the database on a static map.

pids The list of proxy IDs. plotly() Plot the proxy database on an interactive map.

nrec The number of the proxy records. from_df() Load the database from a pandas.DataFrame.

type_dict The count of each proxy type. to_df() Convert the database to a pandas.DataFrame.

lats, lons Location information in lists. filter() Filter the database by supported conditions.

+ Combine multiple ProxyRecords’s/ProxyDatabase’s together.

− Removing multiple ProxyRecord’s from a ProxyDatabase.

[..25 ][..26 ]find_dupilicates() Find duplicated records.

squeeze_dups() Remove duplicated records and keep one.

fetch() Fetch and load the database from cloud.
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Figure 2. Visualization examples of the PAGES 2k version 2 multiproxy database (PAGES 2k Consortium, 2017) using

cfr.ProxyDatabase.plot() and cfr.ProxyDatabase.plotly().
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4.2 climate: gridded climate data processing and visualization

The climate module comes with a ClimateField class that is essentially an extension of xarray.DataArray to better fit

CFR applications. It contains a collection of methods for processing and visualizing the gridded climate model simulation and

instrumental observation data.210

The essential attributes and methods are listed in Table 3. For instance, suppose we have a ClimateField object named fd,

then calling fd.get_anom() will return the anomaly field against a reference time period, and calling fd.get_anom().plot()

(an example of method cascading) will plot the anomaly field on a map (Fig. 3). The spatial resolution and coverage of the

field can be altered by calling fd.regrid() and fd.crop(). Since ClimateField is based on xarray.DataArray, the slice

method applies similarly; however, we augmented the original method to more robustly account for time and calendars in215

the paleoclimate context. For more details on time slicing, please refer to the notebook tutorial: https://fzhu2e.github.io/cfr/

notebooks/climate-ops.html#Time-slicing (Zhu et al., 2024). Similar to a ProxyRecord, a ClimateField with monthly time

resolution can be annualized/seasonalized by calling the annualize() method with a specified list of months. To support

convenient calculation of many popular climate indices such as global mean surface temperature (GMST) and NINO3.4,

the geo_mean() method calculates the “cos-lat” weighted geospatial mean over a region defined by the latitude and longitude220

range. To support quick validation of a reconstructed field, the compare() method facilitates the comparison against a reference

field in terms of a metric such as the gridpoint-wise linear correlation (r), coefficient of determination (R2), or coefficient of

efficiency (CE). Lastly, the load_nc() and to_nc() methods allow loading and writing gridded datasets in the netCDF format

(Rew and Davis, 1990), while the fetch method can be used to conveniently load gridded datasets from the cloud. For instance,

fd = cfr.ClimateField.fetch('iCESM_past1000historical/tas') will fetch and load the iCESM simulated surface225

temperature field since 850 CE (Brady et al., 2019). Similar to that of ProxyDatabase, the argument can also be an arbitrary

URL to a netCDF file hosted in the cloud, and calling without an argument will print out supported predefined entries.

Table 3. The essential attributes and methods of cfr.ClimateField.

Attributes Description Methods Description

da The data in xarray.DataArray. plot() Plot the climate field on a map.

get_anom() Calculate the anomaly field against a reference time period.

regrid() Regrid the field.

crop() Crop the field.

annualize() Annualize/seasonalize the field.

geo_mean() Calculate the geospatial mean over a region.

compare() Compare against a reference field.

load_nc() Load the field from a netCDF file.

to_nc() Output the field to a netCDF file.

fetch() Fetch and load the gridded climate field from cloud.
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Figure 3. A visualization example of an iCESM simulated surface temperature anomaly field using cfr.ClimateField.plot().

4.3 ts: time series processing and visualization

The ts module is for time series processing and visualization in general, and it comes with an EnsTS class to handle ensemble

time series. In specific, the EnsTS class is mainly designed to visualize and validate the reconstructed time series such as GMST230

and NINO3.4, and its essential attributes and methods are listed in Table 4. The plot() method visualizes each member of

the ensemble time series, while the plot_qs() method plots only the quantile envolopes (Fig. 4). Similar to a ClimateField,

the compare() method is useful for a quick [..27 ]comparison of the ensemble median against a reference time series. The

fetch method is supported as well. For instance, bc09 = cfr.ProxyDatabase.fetch('BC09_NINO34') will remotely load

the NINO3.4 estimate by Bunge and Clarke (2009).235

Table 4. The essential attributes and methods of cfr.EnsTS.

Attributes Description Methods Description

time The time axis. plot() Plot each of the ensemble time series.

value The ensemble value in matrix. plot_qs() Plot the quantile envolopes.

nt The temporal length. compare() Compare against a reference time series.

nEns The ensemble size. fetch() Fetch and load the time series data from cloud.

27removed: validation
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Figure 4. A visualization example of the LMR v2.1 ensemble global mean surface temperature (GMST) (Tardif et al., 2019) using

cfr.EnsTS.plot_qs().

4.4 psm: proxy system modeling

The psm module incorporates classes for multiple popular proxy system models (PSMs, Evans et al., 2013), including a uni-

variate linear regression model (Hakim et al., 2016; Tardif et al., 2019) (Linear), a bivariate linear regression model (Hakim

et al., 2016; Tardif et al., 2019) (Bilinear), a tree-ring width model VS-Lite (Tolwinski-Ward et al., 2011, 2013; Zhu and

Tolwinski-Ward, 2023) (VSLite), a simple lake varve thickness model (Zhu et al., 2023a) (Lake_VarveThickness), as well240

as the ice core δ18O model (Ice_d18O), coral δ18O model (Coral_d18O), coral Sr/Ca ratio model (Coral_SrCa) adopted from

PRYSM (Dee et al., 2015), among which Linear and Bilinear are commonly used in paleoclimate data assimilation (PDA),

and others are more useful to generate pseudoproxy emulations (Zhu et al., 2023a, b). A summary of available PSMs in cfr is

listed in Table 5.

Taking the default univariate linear regression model (Linear) as a typical example, the essential attributes and methods245

are listed in Table 6. As illustrated in the notebook tutorial https://fzhu2e.github.io/cfr/notebooks/psm-linear.html (Zhu et al.,

2024), a Linear PSM object can be initialized with a ProxyRecord object, and by calling the calibrate() method, the

PSM utilizes the proxy measurement and the nearest instrumental observation to calibrate the regression coefficients over

the instrumental period, with the option to test multiple seasonality candidates, yielding an optimal regression model. Then

by calling the forward() method, the calibrated model will forward the nearest model simulated climate and generate the250

pseudoproxy estimate, translating the climate signal to the proxy space. For more illustrations of the other available PSMs,

please refer to https://fzhu2e.github.io/cfr/ug-psm.html (Zhu et al., 2024).
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Table 5. A summary of the available proxy system models (PSMs) in cfr.

PSM name Class References

Univariate Linear cfr.psm.Linear Hakim et al. (2016); Tardif et al. (2019)

Multivariate Linear cfr.psm.BiLinear Hakim et al. (2016); Tardif et al. (2019)

VS-Lite cfr.psm.VSLite Tolwinski-Ward et al. (2011, 2013)

Lake Varve Thickness cfr.psm.Lake_VarveThickness Zhu et al. (2023a)

Ice Core δ18O cfr.psm.Ice_d18O Dee et al. (2015)

Coral δ18O cfr.psm.Coral_d18O Dee et al. (2015)

Coral Sr/Ca cfr.psm.Coral_SrCa Dee et al. (2015)

Table 6. The essential attributes and methods of the cfr.psm.Linear proxy system model (PSM).

Attributes Description Methods Description

pobj The ProxyRecord object. calibrate() Calibrate the PSM.

climate_required The list of variable names of the required climate input. forward() Forward the calibrated model.

4.5 da: data assimilation

The da module implements the data assimilation algorithms, currently including the ensemble Kalman filter (Kalman, 1960;

Evensen, 2009) used in the last millenium reanalysis (LMR, Hakim et al., 2016; Tardif et al., 2019) framework. The class is255

named EnKF and Table 7 lists its essential attributes and methods. Direct operations on this class are not recommended unless

for debugging purposes. It is designed to be called internally by the ReconJob class that we introduce later for a high-level

control of the workflow.

Table 7. The essential attributes and methods of cfr.da.EnKF.

Attributes Description Methods Description

prior The dictionary of prior fields. gen_prior_samples() Generate prior samples.

pdb_assim The assimilated ProxyDatabase. gen_Ye() Generate the forward estimates.

seed The seed for randomization. gen_Xb() Generate the background matrix.

nens The ensemble size. update_yr() Update a specific year utilizing the EnKF solver.

recon_vars The names of the reconstructed variables. run() Run the EnKF solver through multiple years.
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4.6 graphem: Graphical Expectation Maximization

The graphem module implements the GraphEM algorithm (Guillot et al., 2015). The class is named GraphEM and Table 8 lists260

its essential attributes and methods. Direct operations on this class are not recommended unless for debugging purposes. [..28

]Similar to da, graphem is also designed to be called internally by the ReconJob class[..29 ].

Table 8. The essential attributes and methods of cfr.graphem.GraphEM.

Attributes Description Methods Description

field_r The reconstructed field. fit() Estimate the parameters and reconstruct the climate field.

proxy_r The reconstructed proxy matrix.

calib Indices of the calibration period.

4.7 reconjob: reconstruction workflow management

The reconjob module provides pre-defined reconstruction workflows attached to the class ReconJob, as listed in Table 9. We

will illustrate the usage of these methods in detail in the sections on PDA and GraphEM workflows.265

Table 9. The essential attributes and methods of cfr.ReconJob.

Attributes Description Methods Description

configs The dictionary of configurations. load_proxydb() Load the proxy database.

proxydb The loaded ProxyDatabase. filter_proxydb() Filter the proxy database.

prior The dictionary of prior fields. annualize_proxydb() Annualize the proxy database.

obs The dictionary of instrumental observations. split_proxydb() Split the proxy database.

load_clim() Load the simulated or observed climate data.

annualize_clim() Annualize the climate data.

regrid_clim() Regrid the climate data.

crop_clim() Crop the climate data.

calib_psms() Calibrate the PSMs for each proxy record.

forward_psms() Forward the PSMs for each proxy record.

run_da() Run the DA solver.

run_da_mc() Run DA with Monte-Carlo iterations.

prep_graphem() Prepare data for the GraphEM solver.

run_graphem() Run the GraphEM solver.

28removed: It is usually called
29removed: that we introduce later for a high-level control of the workflow
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4.8 reconres: result analysis and visualization

The reconres module focuses on postprocessing and visualization of the reconstruction results. It contains a ReconRes class

that helps to load the reconstruction outputs stored in netCDF files from a given directory path, and organize the data in the

form of either ClimateField or EnsTS. The essential attributes and methods of ReconRes are listed in Table 10. We will

illustrate the usage in detail in the sections on PDA and GraphEM workflows.270

Table 10. The essential attributes and methods of cfr.ReconRes.

Attributes Description Methods Description

paths The paths of the reconstruction netCDF files. load() Load the reconstruction files.

recons The dictionary of reconstruction objects. valid() Perform validation against given targets.

da The dictionary of reconstructions in xarray.DataArray. plot_valid() Visualize the validation.

5 cfr’s PDA workflow

In this section, we illustrate the cfr workflow (Fig. 5) with a reconstruction experiment taking the last millennium reanal-

ysis (LMR, Hakim et al., 2016; Tardif et al., 2019) paleoclimate data assimilation (PDA) approach. A similar pseudoproxy

reconstruction experiment can be accessed at https://fzhu2e.github.io/cfr/notebooks/pp2k-ppe-pda.html (Zhu et al., 2024).

The task here is to assimilate tropical coral records and reconstruct the boreal winter (December-February, DJF) surface275

[..30 ]temperature field, which can be used to calculate the El Niño/Southern Oscillation (ENSO) indices (NINO3.4 in this

example)[..31 ]. The “iCESM1” last millennium simulation (Brady et al., 2019) is utilized as the model prior, and the coral

records from the PAGES 2k Phase 2 database (PAGES 2k Consortium, 2017) are used as the observations to update the

prior. NASA Goddard’s Global Surface Temperature Analysis (GISTEMP) (Lenssen et al., 2019) combining land surface air

temperatures primarily from the GHCN-M version 4 (Menne et al., 2018) with the ERSSTv5 sea surface temperature analysis280

(Huang et al., 2017) is used as the calibration target for the PSMs. Finally, [..32 ]a spatially completed version of the near-

surface air temperature and sea-surface temperature analyses product HadCRUT4.6 (Morice et al., 2012) leveraging the

GraphEM algorithm (Guillot et al., 2015; Vaccaro et al., 2021) and the “BC09” NINO3.4 reanalysis (Bunge and Clarke,

2009) are used as the validation target for the posterior, i.e., the reconstruction.

30removed: air
31removed: as the surface air temperature is close enough to the sea surface temperature in ocean areas
32removed: the NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 3 (Poli et al., 2016) and
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Figure 5. The cfr workflow for the last millennium reanalysis (LMR, Hakim et al., 2016; Tardif et al., 2019) paleoclimate data assimilation

(PDA) framework. Here “nino3.4” and “tas” stand for two examples of the reconstructed variables for validation, referring to the El

Niño/Southern Oscillation index series calculated as the spatial average of surface temperature within the tropical Pacific region (5◦N-

5◦S, 170◦W-120◦W), and the surface temperature field, respectively. PSMs: proxy system models; EnKF: ensemble Kalman filter.
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5.1 Load the proxy records, model simulations, and instrumental observations.285

First of all, we import the cfr package and create a ReconJob object named job.

import cfr

job = cfr.ReconJob()

Next, we load the [..33 ]PAGES 2k proxy database (PAGES 2k Consortium, 2017) from the cloud and pick [..34 ]coral records

by calling the filter_proxydb()method, then annualize them to be boreal winter average by calling [..35 ]annualize_proxydb():

job.load_proxydb('PAGES2kv2')

job.filter_proxydb(by='ptype', keys=['coral'])

job.annualize_proxydb(months=[12, 1, 2], ptypes=['coral'])

Now we load the model simulated prior “iCESM1” (Brady et al., 2019) and the instrumentally observed climate data GIS-

TEMP (Lenssen et al., 2019) by calling the load_clim() method.290

job.load_clim(tag='prior', path_dict={'tas': 'iCESM_past1000historical/tas'}, anom_period=(1951, 1980))

job.load_clim(tag='obs', path_dict={'tas': 'gistemp1200_GHCNv4_ERSSTv5'}, anom_period=(1951, 1980),

rename_dict={'tas': 'tempanomaly'})

Here, the tag argument is used to specify whether the loaded climate data will be used as prior or observation. The

rename_dict argument is used to map variable names if the netCDF file does not name a variable as we assumed internally in

cfr. For instance, we assume [..36 ]“lat” for latitude, [..37 ]“lon” for longitude, and [..38 ]“time” for the temporal dimension. The

anom_period argument specifies against which time period we will calculate the [..39 ]anomaly.

Note that here we assume both the prior and observation fields being regularly gridded (lat/lon) datasets, which ensures295

a fast nearest-neighbor search in later processing steps. Any irregularly gridded datasets should be regridded beforehand

using the cfr.utils.regrid_field_curv_rect() function or other third-party tools such as scipy.interpolate.griddata

and ESMPy (https://earthsystemmodeling.org/esmpy).

5.2 Calibrate and forward the PSMs.

With the loaded proxy data, climate simulation, and instrumental observation, we are ready to calibrate the proxy system300

models for each proxy record by calling the calib_psms() method. For coral records, we use the univariate linear regres-

sion model Linear as defined by the ptype_psm_dict argument. [..40 ]The ptype_season_dict, calib_period, and

33removed: PAGES2k
34removed: the tropical
35removed: the annualize_proxydb()method
36removed: ‘lat‘
37removed: ‘lon‘
38removed: ‘time‘
39removed: anomly
40removed: Similarly, the ptype_season_dictargument and the calib_periodargument
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ptype_clim_dict arguments specify the season[..41 ], timespan (in year), and climate variables involved for calibration,

respectively.

job.calib_psms(

ptype_psm_dict={'coral.d18O': 'Linear', 'coral.calc': 'Linear', 'coral.SrCa': 'Linear'},

ptype_season_dict={'coral.d18O': [12, 1, 2], 'coral.calc': [12, 1, 2], 'coral.SrCa': [12, 1, 2]},

\DIFaddbegin \DIFadd{ptype_clim_dict=}{\DIFadd{'coral.d18O': }[\DIFadd{'tas'}]\DIFadd{, 'coral.calc': }[\DIFadd{'tas'}]\DIFadd{, 'coral.SrCa': }[\DIFadd{'tas'}]}\DIFadd{,

}\DIFaddend calib_period=(1850, 2015))

In this example, we have specified a fixed seasonality for the whole proxy database. Users may also perform calibration305

of each proxy record through a for loop of the proxy database, specifying various seasonality manually or based on

the metadata if available. For records whose corresponding PSM is successfully calibrated, a “calibrated” tag is added to

the record to facilitate filtering later. Proxy records with low calibration skill will be assigned a small weight during the

assimilation process as per the EnKF algorithm, so there is no need to set a calibration threshold to manually filter the

records. However, with the flexibility of the package, users have the freedom to easily filter the proxy database, using the310

cfr.ProxyDatabase.filter() method, based on any calibration threshold they like.

Once the PSMs are calibrated (and filtered), we can launch (i.e., forward) them by simply calling the forward_psms()

method.

job.forward_psms()

5.3 Define the season, resolution, and domain of the reconstruction.

Now we annualize the prior by calling the annualize_clim() method, and specify on which resolution and domain we would315

like to conduct the reconstruction by calling the regrid_clim() and crop_clim() method.

job.annualize_clim(tag='prior', months=[12, 1, 2])

job.regrid_clim(tag='prior', nlat=42, nlon=63)

job.crop_clim(tag='prior', lat_min=-35, lat_max=35)

Here we annualize the prior to boreal winter, and regrid the field to a global grid with 42 latitudes and 63 longitudes, and then

crop the domain to be within the 35◦S to 35◦N band where the corals are located.

5.4 Conduct the Monte-Carlo iterations of the data assimilation steps.

Once the pre-processing is complete, we are ready to conduct the data assimilation step. We call the run_da_mc() method320

to perform Monte-Carlo iterations of the EnKF assimilation steps. The argument save_dirpath specifies the directory path

where we store the reconstruction results, and the argument recon_seeds specfiy the seed for randomization for each Monte-

Carlo iteration.

job.run_da_mc(save_dirpath='./recons/lmr-real-pages2k', recon_seeds=list(range(1, 11)))

41removed: and
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5.5 Validate the reconstruction.

Once the Monte-Carlo iterations are done, we should have several netCDF files stored in the specified directory, and we can325

initiate a ReconRes object by specifying the directory path, and load the results by calling the load() method.

res = cfr.ReconRes('./recons/lmr-real-pages2k')

res.load(['nino3.4', 'tas'])

Note that the variable names listed in the load() method are predefined. 'nino3.4' refers to the NINO3.4 index and the

reconstructed ensemble time series will be formed as a EnsTS object. 'tas' refers to the surface [..42 ]temperature field

and the ensemble mean will be formed as a ClimateField object. These two objects will be organized in a dictionary

named res.recons, and their original xarray.DataArray forms will be [..43 ]stored as res.recons['nino3.4'].da and330

res.recons['tas'].da for more universal purposes.

To evaluate the reconstruction skill of the surface [..44 ]temperature field, we load a reference target named “[..45 ]Had-

CRUT4.6_GraphEM” (Vaccaro et al., 2021), which is a spatially completed version of the near-surface air temperature

and sea-surface temperature analyses product HadCRUT4.6 (Morice et al., 2012) leveraging the GraphEM algorithm

(Guillot et al., 2015; Vaccaro et al., 2021), and we validate both the prior and the posterior [..46 ](res.recons['tas']) by335

calling the compare() method over the 1874-2000 CE timespan, which returns another ClimateField object, and we are able

to visualize it by calling its plot() method.

target = cfr.ClimateField().fetch('\DIFdelbegin \DIFdel{20CRv3/tas}\DIFdelend \DIFaddbegin \DIFadd{HadCRUT4.6_GraphEM}\DIFaddend ', vn='\DIFdelbegin \DIFdel{air').rename('}\DIFdelend tas').get_anom((1951, 1980))

target = target.annualize(months=[12, 1, 2]).crop(lat_min=-35, lat_max=35)

# validate the prior

\DIFdelbegin \DIFdel{against 20CR

}\DIFdelend stat = 'corr'

valid_fd = job.prior['tas'].compare(target, stat=stat, timespan=(1874, 2000))

fig, ax = valid_fd.plot(

title=f'{stat}(prior, obs), mean={valid_fd.geo_mean().value[0,0]:.2f}',

projection='PlateCarree', latlon_range=(-32, 32, 0, 360), plot_cbar=False)

# validate the reconstruction

\DIFdelbegin \DIFdel{against 20CR

}\DIFdelend valid_fd = res.recons['tas'].compare(target, stat=stat, timespan=(1874, 2000))

valid_fd.plot_kwargs.update({'cbar_orientation': 'horizontal', 'cbar_pad': 0.1})

42removed: air
43removed: organized in a dictionary named
44removed: air
45removed: 20CR” (Poli et al., 2016), and
46removed: res.recons['tas'] against 20CR
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fig, ax = valid_fd.plot(

title=f'{stat}(prior, obs), mean={valid_fd.geo_mean().value[0,0]:.2f}',

projection='PlateCarree', latlon_range=(-32, 32, 0, 360),

plot_proxydb=True, proxydb=job.proxydb.filter(by='tag', keys=['calibrated']), plot_proxydb_lgd=True,

proxydb_lgd_kws={'loc': 'lower left', 'bbox_to_anchor': (1, 0)})

With the above code lines, we get Fig. 6 top and middle. The top shows the map of Pearson correlation between the prior and

[..47 ]the reference target (“HadCRUT4.6_GraphEM”), while the middle shows that between the posterior [..48 ](i.e., recon-

struction) and the reference target, indicating that the reconstruction is working as expected, boosting the mean correlation340

from [..49 ]0.05 to 0.34. This is one measure of the information added by the proxies.

To evaluate the reconstruction skill of the NINO3.4 index, we load a reference target named “BC09” (Bunge and Clarke,

2009), and [..50 ]then validate res.recons['nino3.4'] against BC09 by calling the compare() method, which returns

another EnsTS object [..51 ]that can be visualized by calling its plot_qs() method.

bc09 = cfr.EnsTS().fetch('BC09_NINO34').annualize(months=[12, 1, 2])

fig, ax = res.recons['nino3.4'].compare(bc09, timespan=(1874, 2000)\DIFaddbegin \DIFadd{, ref_name='BC09'}\DIFaddend ).plot_qs()

ax.set_xlim(1600, 2000)

ax.set_ylabel('NINO3.4 [K]')

The above code lines yield Fig. 6 bottom, and it indicates the reconstruction skill over the instrumental period is remarkably345

high, with correlation coefficient [..52 ]r = 0.80 and the coefficient of efficiency [..53 ]CE = 0.57.

47removed: 20CR
48removed: /reconstructionand 20CR, and it indicates
49removed: 0.07 to 0.39.
50removed: we
51removed: , and we are able to visualize it
52removed: r = 0.81
53removed: CE = 0.58

21



0° 60°E 120°E 180° 120°W 60°W

0°

corr(prior, obs), mean=0.05

0° 60°E 120°E 180° 120°W 60°W

0°

corr(recon, obs), mean=0.34

coral.calc (n=8)
coral.d18O (n=58)
coral.SrCa (n=24)

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

r

1600 1650 1700 1750 1800 1850 1900 1950 2000
Year (CE)

2

0

2

4

N
IN

O
3.

4 
[K

]

median 2.5% to 97.5% 25.0% to 75.0% BC09 (r=0.80, CE=0.57)

Figure 6. Validation of the reconstruction taking the paleoclimate data assimilation approach. (top) The correlation map between the prior

filed and the observation target [..54 ](Vaccaro et al., 2021). (middle) The correlation map between the reconstruction median field and the

observation target. (bottom) The correlation (r) and coefficient of efficiency (CE) between the reconstructed NINO3.4 median series and

the BC09 reanalysis (Bunge and Clarke, 2009). Note that the proxy calibration is performed over 1850-2015 CE, while the validation

is performed over 1874-2000 CE, indicating an overlap of calibration and validation periods. The risk of overfitting is mitigated by

randomly picking model prior and proxies during each Monte-Carlo iteration (Hakim et al., 2016; Tardif et al., 2019).
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6 cfr’s GraphEM workflow

In this section, we illustrate the cfr workflow (Fig. 7) for GraphEM (Section 3.2) with a similar reconstruction experiment

setup that we presented above for the illustration of the PDA workflow. Another similar pseudoproxy reconstruction experiment

can be accessed at https://fzhu2e.github.io/cfr/notebooks/pp2k-ppe-graphem.html (Zhu et al., 2024).350
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Figure 7. The cfr workflow for the Graphical Expectation-Maximization (GraphEM, Guillot et al., 2015) algorithm. Here “nino3.4” and

“tas” stand for two examples of the reconstructed variables for validation, referring to the El Niño/Southern Oscillation index series

calculated as the spatial average of the surface temperature within the tropical Pacific region (5◦N-5◦S, 170◦W-120◦W), and the

surface temperature field, respectively.
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6.1 Load the proxy records and instrumental observations.

The cfr workflow for GraphEM is very similar to that for PDA. The first part is loading and preprocessing the required

data, including the [..55 ]PAGES 2k proxy records (PAGES 2k Consortium, 2017) and the GISTEMP instrumental observation

(Lenssen et al., 2019). The only difference compared to the PDA workflow is that no model prior is needed. Due to the

data sparsity requirement of the GraphEM method, we set a relatively small domain around the NINO3.4 region for the355

reconstruction (20◦S-20◦N, 150◦E-100◦W) in this specific experiment.

import cfr

job = cfr.ReconJob()

# load and preprocess the proxy database

job.load_proxydb('PAGES2kv2')

job.filter_proxydb(by='ptype', keys=['coral'])

job.annualize_proxydb(months=[12, 1, 2], ptypes=['coral'])

# load the instrumental observation dataset

job.load_clim(tag='obs', path_dict={'tas': 'gistemp1200_GHCNv4_ERSSTv5'},

anom_period=(1951, 1980), rename_dict={'tas': 'tempanomaly'})

# define the season, resolution, and domain of the reconstruction

job.annualize_clim(tag='obs', months=[12, 1, 2])

job.regrid_clim(tag='obs', nlat=42, nlon=63)

job.crop_clim(tag='obs', lat_min=-20, lat_max=20, lon_min=150, lon_max=260)

6.2 Prepare the GraphEM solver

[..56 ]Compared to PDA, the preparation of the solver is much easier [..57 ]with GraphEM. Here, we set the calibration period to

be [..58 ]1901-2000 CE, while the reconstruction period [..59 ]is 1871-2000 CE; this reserves 1871-1900 for validation. Such

dates can be easily changed with the arguments recon_period and calib_period. We also process the proxy database to360

be more uniform by keeping only the records that span the full reconstruction time period (uniform_pdb=True) to make the

GraphEM algorithm more efficient.

job.prep_graphem(recon_period=(1871, 2000), calib_period=(1901, 2000), uniform_pdb=True)

55removed: PAGES2k
56removed: Compare
57removed: for
58removed: over
59removed: to be over
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6.3 Run the GraphEM solver.

We run the GraphEM solver with the “hybrid” approach (Section 3.2) with a cutoff radius (cutoff_radius) of [..60 ]5000

km for the neighborhood graph, and [..61 ]2% target sparsity of the in-field part (sp_FF) and [..62 ]2% target sparsity [..63 ]for365

the climate field/proxy part (sp_FP) of the inverse covariance matrix for the GLASSO method. For more details about these

parameters, please refer to Guillot et al. (2015).

job.run_graphem(save_dirpath='./recons/graphem-real-pages2k',

graph_method='hybrid', cutoff_radius=\DIFdelbegin \DIFdel{1500}\DIFdelend \DIFaddbegin \DIFadd{5000}\DIFaddend , sp_FF=\DIFdelbegin \DIFdel{3}\DIFdelend \DIFaddbegin \DIFadd{2}\DIFaddend , sp_FP=\DIFdelbegin \DIFdel{4}\DIFdelend \DIFaddbegin \DIFadd{2}\DIFaddend )

6.4 Validate the reconstruction.

Similar to the PDA reconstruction experiment, we validate the reconstructed surface temperature field against the “[..64 ]Had-

CRUT4.6_GraphEM” dataset (Vaccaro et al., 2021) and the reconstructed NINO3.4 index against the “BC09” reanalysis370

(Bunge and Clarke, 2009), but only over the 1874-1900 CE timespan as the reconstruction over the calibration period (1901-

2000 CE) [..65 ]is identical to the GISTEMP observation (Fig. [..66 ]8).

res = cfr.ReconRes('./recons/graphem-real-pages2k')

res.load(['nino3.4', 'tas'], verbose=True)

# validate the reconstructed surface temperature field

\DIFdelbegin \DIFdel{against 20CR

}\DIFdelend target = cfr.ClimateField().fetch('\DIFdelbegin \DIFdel{20CRv3/tas}\DIFdelend \DIFaddbegin \DIFadd{HadCRUT4.6_GraphEM}\DIFaddend ', vn='\DIFdelbegin \DIFdel{air').rename('}\DIFdelend tas').get_anom((1951, 1980))

target = target.annualize(months=[12, 1, 2]).crop(lat_min=-25, lat_max=25, lon_min=120, lon_max=280)

stat = 'corr'

valid_fd = res.recons['tas'].compare(target, stat=stat, timespan=(1874, 1900))

valid_fd.plot_kwargs.update({'cbar_orientation': 'horizontal', 'cbar_pad': 0.1})

fig, ax = valid_fd.plot(

title=f'{stat}(recon, obs), mean={valid_fd.geo_mean().value[0,0]:.2f}',

projection='PlateCarree', latlon_range=(-25, 25, 0, 360),

plot_cbar=True, plot_proxydb=True, proxydb=job.proxydb, plot_proxydb_lgd=True,

proxydb_lgd_kws={'loc': 'lower left', 'bbox_to_anchor': (1, 0)})

60removed: 1500
61removed: 3
62removed: 4
63removed: of
64removed: 20CR” reanalysis (Poli et al., 2016)
65removed: will be
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# validate the reconstructed NINO3.4

\DIFdelbegin \DIFdel{against BC09

}\DIFdelend bc09 = cfr.EnsTS().fetch('BC09_NINO34').annualize(months=[12, 1, 2])

fig, ax = res.recons['nino3.4'].compare(bc09, timespan=(1874, 1900)).plot(label='recon')

ax.set_xlim(\DIFdelbegin \DIFdel{1800, 2000}\DIFdelend \DIFaddbegin \DIFadd{1870, 1900}\DIFaddend )

ax.set_ylim(-3, 4)

ax.set_ylabel('NINO3.4 [K]')
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Figure 8. Validation of the reconstruction taking the Graphical Expectation Maximization (GraphEM) approach. (top) The correlation

map between the reconstruction median field and the observation target (Vaccaro et al., 2021). (bottom) The correlation (r) and

coefficient of efficiency (CE) between the reconstructed NINO3.4 median series and the BC09 reanalysis (Bunge and Clarke, 2009).

Note that the calibration is performed over 1901-2000 CE, while the validation is performed over 1874-1900 CE.

The result indicates that GraphEM yields a seemingly slightly better skill compared to PDA, although we note that this

skill is sensitive to the parameters (cutoff_radius, sp_FF, and sp_FP), which in practice requires some tuning work375

67removed: It can be seen that the reconstruction skill is overall comparable to that of the PDAapproach, with the limitation that the reconstruction domain

and time interval are restricted mainly due to the proxy data sparsity. It is also worth noting that the GraphEM-based reconstruction is not in ensemble. In

future versions, approaches such as block bootstrapping will be implemented for uncertainty quantification, following Guillot et al. (2015).
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in order to be optimized. In addition, we note that the current comparison is not “apples-to-apples” due to the different

domains and timespans for validation. A more systematic comparison with a consistent setup is presented in the next

section.

6.5 Comparison to PDA

[..69 ]A main value proposition of cfr is to enable convenient inter-methodological comparisons of multiple reconstructions.380

Here, we illustrate how to conduct an “apples-to-apples” comparison of the reconstructions generated by the GraphEM and

PDA approaches.

First, we create ReconRes objects for the two reconstructions and load the validation targets “[..70 ]HadCRUT4.6_GraphEM”

(Vaccaro et al., 2021) and “BC09” (Bunge and Clarke, 2009).

res_graphem = cfr.ReconRes('./recons/graphem-real-pages2k')

res_lmr = cfr.ReconRes('./recons/lmr-real-pages2k')

tas\DIFdelbegin \DIFdel{_20CRv3 }\DIFdelend \DIFaddbegin \DIFadd{_HadCRUT }\DIFaddend = cfr.ClimateField().fetch('\DIFdelbegin \DIFdel{20CRv3/tas}\DIFdelend \DIFaddbegin \DIFadd{HadCRUT4.6_GraphEM}\DIFaddend ', vn='\DIFdelbegin \DIFdel{air').rename('}\DIFdelend tas').get_anom((1951, 1980))

tas\DIFdelbegin \DIFdel{_20CRv3 }\DIFdelend \DIFaddbegin \DIFadd{_HadCRUT }\DIFaddend = tas\DIFdelbegin \DIFdel{_20CRv3}\DIFdelend \DIFaddbegin \DIFadd{_HadCRUT}\DIFaddend .annualize(months=[12, 1, 2])

\DIFdelbegin \DIFdel{.crop(lat_min=-20, lat_max=20, lon_min=150, lon_max=260)

}\DIFdelend nino34_bc09 = cfr.EnsTS().fetch('BC09_NINO34').annualize(months=[12, 1, 2])

Then we call the valid() method for the reconstructions to compute the validation statistics[..71 ], including Pearson385

correlation and coefficient of efficiency (CE) against the same set of validation targets over the same domain ([..72 ]17◦[..73

]S-17◦N, [..74 ]153◦[..75 ]E-108◦W) and the same [..76 ]time span 1874-1900 CE.

res_graphem.valid(target_dict={'tas': tas\DIFdelbegin \DIFdel{_20CRv3}\DIFdelend \DIFaddbegin \DIFadd{_HadCRUT}\DIFaddend , 'nino3.4': nino34_bc09},

timespan=(1874, 1900), stat=['corr', 'CE'])

res_lmr.valid(target_dict={'tas': tas\DIFdelbegin \DIFdel{_20CRv3}\DIFdelend \DIFaddbegin \DIFadd{_HadCRUT}\DIFaddend , 'nino3.4': nino34_bc09},

timespan=(1874, 1900), stat=['corr', 'CE'])

Finally, we call the plot_valid() method to visualize the validation results (Fig. 9). [..77 ]

69removed: cfr enables
70removed: 20CR” (Menne et al., 2018)
71removed: (
72removed: 20
73removed: S-20
74removed: 150
75removed: E-100
76removed: timespan
77removed: It can be seen that the GraphEM and PDA approaches show overall comparable skills with a consistent spatiotemporal validation setup.

Interestingly, compared to the PDA approach, the reconstructed surface temperature field generated by the GraphEM approach shows a better skill over the

western Pacific region, leading to a slightly better reconstruction skill for NINO3.4, while the reconstruction skill over the north center Pacific region is worse.
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fig, ax = res_graphem.plot_valid(

target_name_dict={'tas': '\DIFdelbegin \DIFdel{20CRv3}\DIFdelend \DIFaddbegin \DIFadd{HadCRUT4.6}\DIFaddend ', 'nino3.4': 'BC09'},

recon_name_dict={'tas': 'GraphEM/tas', 'nino3.4': 'NINO3.4 [K]'},

valid_fd_kws=dict(projection='PlateCarree', latlon_range=(\DIFdelbegin \DIFdel{-20, 20, 150, 256}\DIFdelend \DIFaddbegin \DIFadd{-17, 17, 153, 252}\DIFaddend ), plot_cbar=True),

valid_ts_kws=dict(xlim=(1870, 1900), ylim=(-3, 4)))

fig, ax = res_lmr.plot_valid(

target_name_dict={'tas': '\DIFdelbegin \DIFdel{20CRv3}\DIFdelend \DIFaddbegin \DIFadd{HadCRUT4.6}\DIFaddend ', 'nino3.4': 'BC09'},

recon_name_dict={'tas': 'PDA/tas', 'nino3.4': 'NINO3.4 [K]'},

valid_fd_kws=dict(projection='PlateCarree', latlon_range=(\DIFdelbegin \DIFdel{-20, 20, 150, 256}\DIFdelend \DIFaddbegin \DIFadd{-17, 17, 153, 252}\DIFaddend ), plot_cbar=True),

valid_ts_kws=dict(xlim=(1870, 1900), ylim=(-3, 4)))

It can be seen that the GraphEM and PDA approaches show overall comparable skill with a consistent spatiotemporal

validation setup, with the mean correlation skill being around 0.5 in the specific domain (Fig. 9a, d). PDA shows fairly390

uniform reconstruction skill, while GraphEM’s is more spatially variable, and is notably higher in the eastern equatorial

Pacific. This leads to a slightly higher reconstruction skill for NINO3.4 (Fig. 9c, f), as measured by both r (0.82 vs 0.72)

and CE (0.63 vs 0.51).

The weak and negative correlation shown in Fig. 9a is located far from proxy locales, and could be due to two main

causes, which are not mutually exclusive:395

Covariance Modeling The graph used here has been minimally optimized, and it is possible that it is too sparse, which

would understate the strength of teleconnections. This would result in under-constrained temperature far from proxy

locales, as observed here.

Proxy Modeling GraphEM implicitly applies a so-called “direct regression” framework (Brown, 1994), whereby the climate

variable (here, tas) is modeled as a linear combination of all the proxies within the neighborhood identified by400

the graph. This stands in contrast to the “indirect regression” framework (Brown, 1994) used as part of PDA,

where proxies are modeled as linearly dependent on local temperature. In the climate context, it has been shown

that direct regression is problematic and may result in high variance estimates, especially when underconstrained

by observations (Tingley and Li, 2012). This high variance would manifest as temperature estimates with poor

correlation to the instrumental target.405

Both the GraphEM and PDA based reconstructions show poor CE skill over the western Pacific region (Fig. 9b, e),

indicating large amplitude biases, which is likely due to issues in proxy modeling: here corals are considered temperature

recorders, while in the western Pacific their signal is known to be largely driven by surface hydrology (e.g. Lough, 2010;

Tierney et al., 2015).

By conducting more reconstruction experiments, we find that the PDA approach shows a robust ability to handle various410

spatiotemporal reconstruction setups, while the GraphEM approach is computationally limited to restricted reconstruction
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domains and time intervals so as to ensure a relatively dense data matrix, without which the EM algorithm can take a

long time converging. This computational restriction also limits the degree of graph optimization that can be performed.

It is also worth noting that the GraphEM-based reconstruction produced by cfr does not, at this stage, produce en-

sembles. In future versions, approaches such as block bootstrapping will be implemented for uncertainty quantification,415

following Guillot et al. (2015).
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Figure 9. Comparison of the reconstructions generated by the GraphEM and PDA approaches against the same validation targets “[..78

]HadCRUT4.6_GraphEM” [..79 ](Vaccaro et al., 2021) and “BC09” (Bunge and Clarke, 2009) over the same domain ([..80 ]17◦[..81 ]S-

17◦N, [..82 ]153◦[..83 ]E-108◦W) and the same timespan 1874-1900 CE.
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7 Summary

Climate field reconstruction provides spatial details about past climate, and the cfr package makes this process intuitive,

modular, and efficient for Python users. In particular, cfr enables a sophisticated laboratory for comparisons of different

climate field reconstruction methods, which is of critical importance to better estimate and interpret reconstructions, given420

their sensitivity to multiple error sources rooted in the climate model prior, proxy records, proxy system modeling, and the

reconstruction algorithm itself. In addition, cfr is a handy toolbox for paleoclimate data analysis and visualization, lowering

the bar for processing and visualizing proxy records, climate model output, and instrumental observations.

The current version of the package provides native support for climate field reconstruction over the Common Era,

and its framework can be readily expanded for deep-time reconstructions (e.g., Tierney et al., 2020; Osman et al.,425

2021) through porting PSMs of deep-time proxies such as planktic foraminiferal δ18Oc, Mg/Ca, TEX’86, and UK’37 (e.g.,

Malevich et al., 2019; Tierney and Tingley, 2014, 2018; Tierney et al., 2019; King et al., 2023). As an open-source and

community-based code, future versions of the package will combine contributions from the core development team and the

community to support more CFR methods such as BARCAST (Tingley and Huybers, 2013), an online ensemble Kalman

filter (Perkins and Hakim, 2017, 2021), particle filters (Goosse et al., 2010; Dubinkina et al., 2011; Dubinkina and Goosse,430

2013; Liu et al., 2017; Shi et al., 2019; Lyu et al., 2021), a wider array of PSMs for deep-time reconstructions, along with

more postprocessing, visualization, and validation functionalities, catalyzing open and reproducible paleoclimate research. A

contributing guide is available at: https://fzhu2e.github.io/cfr. We hope this ethos invites more replicability and reproducibility

in paleoclimate reconstructions, thereby deepening confidence in our knowledge of past climates.

Code and data availability. The cfr codebase is available at: https://github.com/fzhu2e/cfr under the BSD-3 Clause licence. Its documenta-435

tion can be accessed at: https://fzhu2e.github.io/cfr. The exact version used to produce the results shown in this paper is archived on Zenodo

at: https://zenodo.org/record/10575537 (Zhu et al., 2024), which has been tested with the current mainstream Python versions: 3.9,

3.10, and 3.11. Please follow the evolving installation guide at https://fzhu2e.github.io/cfr/ug-installation.html for more updated details,

including the recommended Python version.

All datasets leveraged in the examples illustrated in this study can be automatically fetched from the cloud with cfr’s remote-data-loading440

feature, without the hassle of manually searching and downloading, including:

– The PAGES 2k phase 2 global multiproxy database (PAGES 2k Consortium, 2017) hosted on the National Center for Environmental

Information’s World Data Service for Paleoclimatology (https://www.ncei.noaa.gov/access/paleo-search/study/21171). A reorganized

copy for the remote-data-loading purpose is hosted on Zenodo (https://zenodo.org/record/8367746) (Zhu, 2023) and Github (https:

//github.com/fzhu2e/cfr-data/raw/main/pages2kv2.json).445

– The “pseudoPAGES2k” pseudoproxy dataset (Zhu et al., 2023a) hosted on Zenodo (https://doi.org/10.5281/zenodo.8173256) (Zhu

et al., 2023b) and Github (https://github.com/fzhu2e/paper-pseudoPAGES2k).

– The “iCESM1” last millennium simulation (Brady et al., 2019) hosted on a data server at University of Washington by Rorbert Tardif

(https://atmos.washington.edu/~rtardif/LMR/prior).
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– The NASA Goddard’s Global Surface Temperature Analysis (GISTEMP) (Lenssen et al., 2019) combining land surface air tempera-450

tures primarily from the GHCN-M version 4 (Menne et al., 2018) with the ERSSTv5 sea surface temperature analysis (Huang et al.,

2017) hosted on NASA’s website (https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_ERSSTv5.nc.gz).

– The spatially completed version of the near-surface air temperature and sea-surface temperature analyses product HadCRUT4.6

(Morice et al., 2012) leveraging the GraphEM algorithm (Vaccaro et al., 2021) hosted on Zenodo (https://zenodo.org/records/4601616)

and Github (https://github.com/fzhu2e/cfr-data/raw/main/HadCRUT4.6_GraphEM_median.nc).455

– The “BC09” NINO3.4 reanalysis (Bunge and Clarke, 2009) hosted on Zenodo (https://zenodo.org/record/8367746) (Zhu, 2023) and

Github (https://github.com/fzhu2e/cfr-data/raw/main/BC09_NINO34.csv) for the remote-data-loading purpose.
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