27 Mar 2023
 | 27 Mar 2023
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

An Aerosol Climatology via Remote Sensing over Metro Manila, Philippines

Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian

Abstract. Aerosol particles in Southeast Asia have a complex life cycle and consequently are challenging to characterize. The diverse topography and weather in the region complicate the situation. An aerosol climatology was established based on AERONET data (December 2009 to October 2018) for clear sky days in Metro Manila, Philippines. Aerosol optical depth (AOD) values were highest in August, coinciding with the summer southwest monsoon, due partly to fine particles from urban aerosol particles, including soot. Also, August corresponds to the burning season in insular Southeast Asia when smoke is often transported to Metro Manila. Clustering of AERONET volume size distributions (VSD) resulted in five aerosol particle sources based on the position and magnitude of their peaks in the VSD and the contributions of specific particle species to AOD per cluster based on MERRA-2. The clustering showed that the majority of aerosol particles above Metro Manila were from a clean marine source (58 %), which could be related to AOD values there being relatively smaller than in other cities in the region. The following are the other particle sources over Metro Manila: fine polluted (20 %), mixed polluted (12 %), urban/industrial (5 %), and cloud processing (5 %). Furthermore, MERRA-2 AOD data over Southeast Asia were analyzed using empirical orthogonal functions. Along with AOD fractional compositional contributions and wind regimes, four dominant aerosol particle air masses emerged: two sulfate air masses from East Asia, an organic carbon source from Indonesia, and a sulfate source from the Philippines. Knowing the local and regional aerosol particle air masses that impact Metro Manila is useful in identifying the sources while gaining insight on how aerosol particles are affected by long-range transport and their impact on regional weather.

Genevieve Rose Lorenzo et al.

Status: open (until 31 May 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-197', Anonymous Referee #1, 25 Apr 2023 reply
  • RC2: 'Comment on egusphere-2023-197', Anonymous Referee #2, 23 May 2023 reply

Genevieve Rose Lorenzo et al.

Genevieve Rose Lorenzo et al.


Total article views: 270 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
190 68 12 270 20 3 3
  • HTML: 190
  • PDF: 68
  • XML: 12
  • Total: 270
  • Supplement: 20
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 27 Mar 2023)
Cumulative views and downloads (calculated since 27 Mar 2023)

Viewed (geographical distribution)

Total article views: 238 (including HTML, PDF, and XML) Thereof 238 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 29 May 2023
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An aerosol climatology was established in Metro Manila, Philippines from aerosol particle chemical and physical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing sources, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.