Preprints
https://doi.org/10.5194/egusphere-2023-1952
https://doi.org/10.5194/egusphere-2023-1952
13 Sep 2023
 | 13 Sep 2023

Wood microclimate as a predictor of carbon dioxide fluxes from deadwood in tropical Australia

Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison

Abstract. Deadwood is an important yet understudied carbon pool in tropical ecosystems. Wood microclimate, as defined by wood moisture content and temperature, drives decomposer (microbial, termite) activities and deadwood degradation to CO2. Microclimate is strongly influenced by local climate, and thus, climate data could be used to predict CO2 fluxes from decaying wood. Given the increasing availability of gridded climate data, this link would allow the rapid estimation of deadwood-related CO2 fluxes from tropical ecosystems worldwide. In this study, we adapted a mechanistic fuel moisture model that uses weather variables (e.g. air temperature, precipitation, solar radiation) to characterize wood microclimate along a rainfall gradient in Queensland, Australia. We then developed a Bayesian statistical relationship between microclimate and CO2 flux from pine (Pinus radiata) blocks deployed at sites and combined this relationship with our microclimate simulations to predict CO2 fluxes from deadwood at 1-hour temporal resolution. We compared our pine-based simulations to moisture-CO2 relationships from stems of native tree species deployed at the wettest and driest sites. Finally, we integrated fluxes over time to estimate the amount of carbon entering the atmosphere and compared these estimates to measured mass loss in pines and native stems. Our statistical model showed a positive relationship between CO2 fluxes and wood microclimate variables. Comparing cumulative CO2 with wood mass loss, we observed that carbon from deadwood decomposition is mainly released as CO2 regardless of the precipitation regime. At the dry savanna, only about 19 % of the wood mass loss was released to CO2 within 48 months, compared to 86 % at the wet rainforest, suggesting longer residence times of deadwood compared to wetter sites. However, the amount of carbon released in-situ as CO2 is lower when wood blocks are attacked by termites, especially at drier sites. These results highlight the important but understudied role of termites in the breakdown of deadwood in dry climates. Additionally, mass loss-flux relationships of decaying native stems deviated from that of pine blocks. Our results indicate that wood microclimate variables are important in predicting CO2 fluxes from deadwood degradation, but are not sufficient, as other factors such as wood traits (wood quality, chemical composition, and stoichiometry) and biotic processes should be considered in future modeling efforts.

Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1952', Anonymous Referee #1, 29 Sep 2023
    • AC1: 'Reply on RC1', Luciana Chavez Rodriguez, 17 Nov 2023
  • RC2: 'Comment on egusphere-2023-1952', Anonymous Referee #2, 16 Oct 2023
    • AC2: 'Reply on RC2', Luciana Chavez Rodriguez, 17 Nov 2023
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison

Data sets

WTF-Climate-Flux Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison https://github.com/Zanne-Lab/WTF-Climate-Flux

Model code and software

WTF-Climate-Flux Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison https://github.com/Zanne-Lab/WTF-Climate-Flux

Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison

Viewed

Total article views: 523 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
389 105 29 523 38 21 20
  • HTML: 389
  • PDF: 105
  • XML: 29
  • Total: 523
  • Supplement: 38
  • BibTeX: 21
  • EndNote: 20
Views and downloads (calculated since 13 Sep 2023)
Cumulative views and downloads (calculated since 13 Sep 2023)

Viewed (geographical distribution)

Total article views: 505 (including HTML, PDF, and XML) Thereof 505 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 26 Apr 2024
Download
Short summary
Understanding the link between climate and carbon fluxes is crucial in predicting how climate change will impact carbon sinks. We estimated CO2 fluxes from deadwood in tropical Australia using wood microclimate variables (wood moisture content and temperature). Our model predicted that the majority of deadwood carbon is released as CO2, except when termite activity is detected. Future models should also incorporate wood traits, like species and chemical composition, to better predict fluxes.