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Abstract.

Deadwood is an important yet understudied carbon pool in tropical ecosystems. Wood microclimate, as defined by wood

moisture content and temperature , drives
:::::::
moisture

:::
and

::::::::::
temperature

::::
drive

:
decomposer (microbial, termite) activities and dead-

wood degradation to CO2. Microclimate is strongly influenced by local climate, and thus, climate data could be used to

predict CO2 fluxes from decaying wood. Given the increasing availability of gridded climate data, this link would allow the5

rapid estimation of deadwood-related CO2 fluxes from tropical ecosystems worldwide. In this study, we adapted a mechanis-

tic fuel moisture model that uses weather variables (e.g. air temperature, precipitation, solar radiation) to characterize wood

microclimate
:::::::
moisture

:::
and

:::::::::::
temperature along a rainfall gradient in Queensland, Australia. We then developed a Bayesian sta-

tistical relationship between microclimate and CO2 flux from pine (Pinus radiata) blocks deployed at sites and combined

this relationship with our microclimate simulations to predict CO2 fluxes from deadwood at 1-hour temporal resolution. We10

compared our pine-based simulations to moisture-CO2 relationships from stems of native tree species deployed at the wettest

and driest sites. Finally, we integrated fluxes over time to estimate the amount of carbon entering the atmosphere and compared

these estimates to measured mass loss in pines and native stems. Our statistical model showed a positive relationship between

CO2 fluxes and wood microclimate variables
:::::::
moisture

::::
and

::::::::::
temperature. Comparing cumulative CO2 with wood mass loss, we

observed that carbon from deadwood decomposition is mainly released as CO2 regardless of the precipitation regime. At the15

dry savanna, only about 19% of the wood mass loss was released to CO2 ::::::::::
decomposed

:
within 48 months, compared to 86% at

the wet rainforest, suggesting longer residence times of deadwood compared to wetter sites. However, the amount of carbon

released in-situ as CO2 is lower when wood blocks are attacked by termites, especially at drier sites. These results highlight

the important but understudied role of termites in the breakdown of deadwood in dry climates. Additionally, mass loss-flux
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relationships of decaying native stems deviated from that of
::::
those pine blocks. Our results indicate that wood microclimate20

variables are important in
:::::::
moisture

:::
and

:::::::::::
temperature

:::
are

::::::::
necessary

::::
but

:::
not

::::::::
sufficient

:::
for

:
predicting CO2 fluxes from dead-

wood degradation, but are not sufficient, as other .
:::::
Other

:
factors such as wood traits (wood quality, chemical composition, and

stoichiometry) and biotic processes should be considered in future modeling efforts.

1 Introduction

Tropical and subtropical forests are important ecosystems in the global terrestrial carbon (C) cycle (Raich et al., 2006; Mitchard,25

2018; Taylor et al., 2017). In 2020, they made up 61% of the global tree cover by area (FAO, 2020). Within tropical forests,

deadwood, including fallen trees and branches, stumps, and dead standing trees (Woldendorp and Keenan, 2005), can account

for more than 50% of the aboveground C stock (Progar et al., 2000; Pfeifer et al., 2015; Wu et al., 2020). Deadwood is also

considered a stable C pool due to its long residence time (Pfeifer et al., 2015) and provides ecological services such as habitat

for plants and soil fauna (Gale, 2000; Woldendorp and Keenan, 2005; Yan et al., 2006; Liu et al., 2006; Gómez-Brandón et al.,30

2017; Kumar et al., 2017). Despite its global importance, deadwood remains an understudied terrestrial carbon pool (Gale,

2000; Pfeifer et al., 2015).

Tropical deadwood is mainly cycled biotically through activities of wood-dwelling microorganisms, such as fungi, and

invertebrates such as termites (Ulyshen, 2016; Griffiths et al., 2019; Zanne et al., 2022). Invertebrates are responsible for the

mechanical breakdown of wood, while fungi and other microbes secrete digestive enzymes to break down wood chemically35

(Ulyshen, 2016). The activities of these decomposers are controlled by site-specific environmental conditions (Zhou et al.,

2007). Moisture and temperature affect microbial (Hu et al., 2017) and termite activity (Cheesman et al., 2018; Clement et al.,

2021; Kim et al., 2021; Zanne et al., 2022) as well as fungal species composition and richness (Pouska et al., 2017; Olou

et al., 2019; Dossa et al., 2021), by modulating enzyme production and activity (Pichler et al., 2012; Green et al., 2022) and

defining microhabitats suitable for microbial and invertebrate activity (Yoon et al., 2015). Thus, these two variables indirectly40

affect deadwood degradation by modifying degradation rates (Hagemann et al., 2010; Hu et al., 2018). Quantifying how

environmental conditions influence deadwood degradation rates is necessary to understand the variation of CO2 fluxes from

tropical forests across time and space (Cornwell et al., 2009).

There is little consensus around which factors control deadwood degradation and CO2 fluxes from decaying deadwood.

Chambers et al. (2000) found that temperature is the best predictor of CO2 fluxes from decaying wood in forests. However,45

according to Rowland et al. (2013), this might only be true for temperate forests where stronger temperature gradients are ob-

served, whereas moisture levels are more consistent. The interaction of these two factors could also be important in controlling

deadwood degradation rates (Forrester et al., 2012). Precipitation, coupled with high moisture content, increases degradation

rates only at high temperatures (Seibold et al., 2021), and high temperatures compensate for slower degradation rates under

dry conditions by increasing enzyme kinetics (A’Bear et al., 2014).50

Most studies use climate variables, such as air temperature and precipitation, to represent the microclimate where deadwood

decay occurs and predict CO2 fluxes from decaying wood (Chambers et al., 2000; Zhou et al., 2007; Hu et al., 2018; Cheesman
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et al., 2018; Kim et al., 2021). Even though there is a clear coupling between climate variables and microclimate, unique

microclimate conditions may occur under the forest canopy (Floriancic et al., 2023). Few studies
:
in

:::::::
ecology

:
have measured

wood moisture content and temperature directly, and those that have are limited to a low temporal resolution or impacted55

by wood degradation processes if using sensors (Woodall et al., 2020; Green et al., 2022). A low temporal resolution of

microclimate variables
::::
wood

::::::::
moisture

::::
and

::::::::::
temperature might mask daily and seasonal variations of wood moisture content

and temperature
::::
these

::::::::
variables. Consequently, variations of CO2 fluxes from deadwood decay will not be well represented

(Green et al., 2022), impeding our understanding of the C budget from forest ecosystems.

In this study, we predict CO2 fluxes from tropical deadwood degradation using wood microclimate variables, which we60

define in this paper as wood moisture content
:::::::
moisture

:
and temperature. Taking advantage of gridded climate data from remote

sensing (Stackhouse, 2006; Nguyen et al., 2019) and mechanistic fuel moisture content (FMC) models, typically used for

firefighting and forestry management (Matthews, 2014), we simulate wood microclimate
:::::::
moisture

:::
and

:::::::::::
temperature across a

precipitation gradient in Australia. These models use weather variables (air temperature, rainfall, solar radiation, air humidity,

and wind speed) to estimate FMC and temperature (Nelson, 2000; Matthews, 2006), explaining up to 94% of the variance65

in measured FMC (van der Kamp et al., 2017). Considering the importance of moisture in deadwood decay and given the

availability of FMC models to predict FMC from climate, FMC models are a good candidate for downscaling weather variables

to wood microclimate for predictions of CO2 fluxes from deadwood decomposition (Figure 1).

To evaluate the link between weather data, wood microclimate
:::::::
moisture

::::
and

::::::::::
temperature, and CO2 fluxes from dead-

wood decomposition, we adapted a mechanistic FMC model by van der Kamp et al. (2017) to simulate wood microclimate70

variables , wood moisture content and temperature
::::
these

::::::::
variables

:
along a precipitation gradient spanning dry savanna to

wet rainforest ecosystems.
::::::
Similar

:::::::::::
climate-based

::::::::
moisture

:::::::
content

:::::::
models

::::
have

::::
also

:::::
been

:::::::::
developed

:::
for

::::::
timber

::::::::
structure

:::
risk

::::::::::
assessment

:::
and

:::::::::::
successfully

:::::::
capture

::::
daily

::::
and

::::::::
seasonal

:::::::
moisture

:::::::
content

::::::
trends

::::::::::::::::::
(Hansson et al., 2012)

:
.
::::
Our

::::::::
approach

:::
has

:::
the

::::::::
potential

::
to

:::::::
provide

:::::
wood

::::::::
moisture

::::
and

::::::::::
temperature

::
at
:::

an
::::::
hourly

:::::
time

:::::::::
resolution.

:
In this paper, we will refer to

deadwood moisture data collected through processing experimental wood blocks as "moisture content"
:::::::
moisture

:::::::
content75

and data collected by the Campbell CS506 moisture stick as "FMC" data. We hypothesize wood microclimate variables to

positively correlate with CO2 flux and
:::::
sensor

::
as

:::::
FMC

:::
data.

:::::
From

:::
the

::::::::::
perspective

::
of

:::::
wood

:::::::
integrity

::::
and

:::::::::
durability,

::::::::
extensive

:::::::
literature

::
in

:::::
wood

:::::::
material

:::::::
sciences

:::::::
suggests

::
a
::::::
positive

:::::::::
correlation

::::::::
between

::::
wood

::::::
decay

:::
and

:::::
wood

:::::::
moisture

::::::
and/or

::::::::::
temperature

:::::::::::::::::::::::::::::::::::
(Viitanen, 1997; Brischke and Rapp, 2008a)

:
.
:::::::::::
Additionally,

:::::
wood

:::::::
moisture

:::
and

::::::::::
temperature

:::
are

:::::
better

:::::::::
predictors

::
of

:::::
wood

:::::
decay

:::
than

::::::::::::
macroclimate

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brischke et al., 2006; Brischke and Rapp, 2008a, b; van Niekerk et al., 2021).

::::
We

::::::::
extended

:::
this

::::
idea

::::
and80

:::::
further

::::::::::::
hypothesized

:::
that

:
cumulative mass loss of pine blocks to correspond to cumulative

::::::::::
corresponds

::
to CO2 flux predicted

from wood microclimate variables. Alternatively, if
:::::::
moisture

:::
and

:::::::::::
temperature.

::
If other pathways of mass loss are active, such

as termite
:::::::::::::
termite-mediated

:
decay, then cumulative mass loss should exceed predictions of cumulative CO2 flux from dead-

wood.
::::::::
Likewise,

:::
we

:::::::::::
hypothesized

:::
that

:::
the

:::::::
strength

::
of

:::
the

::::::::::
relationship

:::::::
between

:::::
wood

:::::::
moisture

::::
and

::::::::::
temperature

:::
and

:::::
CO2 :::::

fluxes

:::::
should

:::::
differ

::::::
across

:::
our

:::::::::::
precipitation

:::::::
gradient.

:
Finally, we provide additional mechanistic explanations of factors influencing85

deadwood decomposition in our study site.
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Figure 1. Conceptual model of interactions between wood microclimate
:::::::
moisture

:::
and

:::::::::
temperature (defined as wood moisture content and

temperature) and CO2 fluxes from decaying wood. Weather variables influence wood microclimate variables
:::::::
moisture

:::
and

:::::::::
temperature,

which in turn influences deadwood degradation and the release of CO2 back to the atmosphere. Finally, altered CO2 concentration in the

atmosphere affects local and regional climate , influencing
:
as
::::
well

::
as future climate patterns. In this study, we used a mechanistic model to

derive wood microclimate variables
::::::
moisture

:::
and

:::::::::
temperature from weather data and a statistical model to relate wood microclimate variables

::::
them to CO2 flux.

2 Methods

2.1 Study Site and experimental design

2.1.1 Site description

The study was conducted at five sites along a 75 km rainfall gradient (960-4250 mmyear−1) in tropical Northeast Australia90

from June 2018 to June 2022 (https://www.bom.gov.au, 1989-2019). From greatest to least rainfall, the sites (Figure 2) are:

James Cook University’s Daintree Rainforest Observatory (wet rainforest; 16.1012°S, 145.4444°E) and Australian Wildlife

Conservatory’s Brooklyn Sanctuary’s Mt. Lewis Rainforest (dry rainforest; 16.5933°S, 145.2743°E), Mt. Lewis Sclerophyll

(sclerophyll; 16.5830°S, 145.2620°E), Station Creek (wet savanna; 16.610°S, 145.2400°E), and Pennyweight Outstation (dry

savanna; 16.5746°S, 144.9163°E). Site descriptors (e.g. wet, dry) are relative to our gradient.95
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Figure 2. Study sites across the precipitation gradient in Australia. The five study sites are in northeastern Australia (Panel A) along a 75 km

rainfall gradient. In panel B, sites are numbered from wettest to driest (1. wet rainforest, 2. dry rainforest, 3. sclerophyll, 4. wet savanna, 5.

dry savanna). Images are obtained from Google Earth (https://earth.google.com/). (Panel C) Color schemes used to differentiate sites. Lower

precipitation is indicated by lighter color.

2.1.2 Pine and common garden experimental setups

Two experiments were started in June 2018: a pine experiment and native species common garden experiment. The pine

experiment was set up to determine if CO2 fluxes from coarse woody debris differed across all 5 sites in the rainfall gradient.

At each site, pine (Pinus radiata) blocks (9 x 9 x 5 cm) were deployed in five plots.
::::
Pine

::::::
blocks

::::
were

:::
cut

:::::
from

::::
pine

::::::
planks

:::::::
obtained

::::
from

::
a
::::
saw

::::
mill.

:::::
They

::::
were

:::::::::
harvested

::::
from

:::::
trees

:::::
grown

:::
for

::::::
timber,

:::
so

:::
the

::::::
blocks

::::
were

::::::
likely

:::::::::
heartwood.

:::
We

:::::
used100

:::
this

::::::
method

:::
as

:::
we

:::::::
followed

::
a
:::::::
standard

:::::::
protocol

:::
for

::::::::
assessing

:::::::
termite

::::::
activity

:::::::::
developed

::
by

::::::::::::::::::::
Cheesman et al. (2018).

:
The pine

block sizes were smaller than the standard definition of coarse woody debris (7.6-10 cm diameter (Harmon and Sexton, 1996;

Woodall, 2010; Palace et al., 2012) to facilitate gas flux measurements. For each timepoint, two blocks were deployed in each

plot: one enclosed in 280 µm lumite® mesh (BioQuip) to
::::
were

::::::::
deployed

::
in

::::
each

:::
plot

::
to
::::::::
represent

::::
two

:::::
insect

:::::
access

::::::::::
treatments:

:::
one

:::::::::
completely

::::::
closed

::
to

:
exclude insect activity and another covered in mesh with 10 holes, 5 mm in diameter,

::
in

:::
the

:::::
mesh105

to allow insect access. Blocks were deployed and harvested at 6, 12, 18, 24, 30, 36, 42, and 48 months to capture seasonal

variation in CO2 fluxes (2
:::::
insect

::::::
access treatments * 8 harvests * 5 plots * 5 sites = 400 blocks deployed).

The native species common garden experiment included a similar experimental setup to the pine experiment, with wood

stems only deployed in the driest and wettest site.
::::
sites.

::::::
Native

:::::
stems

::::
were

::::::::
harvested

:::::::
directly

::::
from

::::
our

::::
field

::::
sites

:::
and

:::::::
include

::::::::
heartwood

::::
and

:::::::
sapwood

::::::::::
(additional

:::::
details

::
in

:::::::::::::::
Law et al. (2023)

:
). Stems (∼ 7 cm diameter and ∼ 10 cm length) of native trees110

were used to assess variation in decomposition across sites. Native stems were harvested and placed either in wet rainforest

5
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(10 species) or dry savanna (6 species) at the sites where they were harvested. There were no overlapping species between

sites. Stems were harvested after 12, 18, 24, 30, 36, and 42 months (Table S3). Additional details of the experimental setup are

described in Law et al. (2023).

2.1.3 Harvest and CO2 flux measurements115

During harvests, blocks and stems were removed from their mesh bags, and any accumulated organic matter was removed.

Wood pieces were examined for termite and soil presence. An initial field weight was taken, and CO2 flux from the wood

was measured with an infrared gas analyzer (Los Gatos Ultraportable Greenhouse Gas Analyzer with a LI-COR Long Term

Chamber, Model 8100-104). We used a soil collar (20 cm diameter) to which we affixed a plexiglass bottom. The bottom was

used to create a closed chamber and we ensured there were no leaks. After the wood sample was equilibrated in the chamber for120

60 seconds, CO2 concentration (ppm) and chamber temperature (°C) were measured over 180 seconds. Block or stem volume

was then measured using water displacement. Each wood sample was separated into intact wood
:::::
(wood

::::::
pieces

::::
with

::::::::
structural

:::::::
integrity), carton (created from termite activity), soil (any soil that entered the bag), and excess (wood shavings and chips) with

each component weighed individually. As we were only interested in CO2 fluxes coming from wood, samples which were

majority soil or carton were removed from analysis (Figure S1). Final mass was determined after stems and blocks were dried125

in an oven at 100°C to a constant weight. The proportion of mass loss was calculated using the following formula:

Proportion Mass Loss =
Initial dry weight −Harvest wood dry weight

Initial dry weight
(1)

The CO2 flux rate was calculated using the formula derived by Dossa et al. (2015):

RS =∆CO2 ·
P

Pi
·M · (Vc −Vs)

Vi
· Ti

(Ti −Tc)
· 1

Ws
(2)

where RS is the respiration rate, ∆CO2 is the change in the concentration of CO2 over time, M is the molar mass of CO2130

(44.01 gmol−1), P is the pressure, Pi is the standard pressure (1013.25 mbar), Vc is the volume of the chamber (4.27 L or

4.58 L), Vs is the volume of the stem, Vi is the standard volume (22.4 L), Ti is the standard temperature (273.15 K), Tc is the

temperature of the chamber in °C, and Ws is the dry weight of the stems or wood blocks. ∆CO2 was determined by taking

the slope of the linear fit to CO2 readings plotted over the first 170 seconds of the 180-second measurement in case of time

mismatches between the chamber and software clocks. Samples with insignificant
::::::::::::
non-significant

:
(p>0.05) linear fits were135

removed from the analysis (Figure S1, 3% of total samples). Additionally, blocks harvested at 6 months were excluded from

analysis as block volume was not measured. The final rates were represented in units of µgCO2 s
−1 g−1 wood.
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2.2 Wood microclimate
::::::::
moisture

:::
and

::::::::::::
temperature: observations and modeling

2.2.1 Wood microclimate
::::::::
moisture

:::
and

::::::::::::
temperature observations

We considered the wood microclimate variables, wood
:::::
wood moisture content and temperature , during flux measurement

:::::
during140

:::
flux

::::::::::::
measurements. We used Tc, the temperature of the LI-COR chamber and ambient temperature during flux measurements,

:::
(Tc)

:
to represent wood temperature. Wood moisture content was calculated with fresh and dry weights of intact wood using

the following formula:

Moisture content =
Fresh Weight −Dry Weight

Dry Weight
· 100% (3)

2.2.2 Wood microclimate
::::::::
moisture

:::
and

::::::::::::
temperature modeling145

a) Model description:

We modeled wood microclimate variables
:::::::
moisture

::::
and

::::::::::
temperature using the fuel moisture model of van der Kamp

et al. (2017). Briefly, the model considers a standard stick
::::
wood

::::::
dowel for fuel moisture measurements to be divided into

an inner core ("c") and an outer layer ("o"). The inner core and the outer layer exchange energy and moisture, but only

the outer layer exchanges energy and moisture with the environment.150

The main components of the energy budget of the stick
::::
wood

::::::
dowel

:::
part

::
of

:::
the

::::::
sensor are i) the incoming longwave radi-

ation (Labs), ii) diffuse (Kabs−diff ) and direct (Kabs−dir) shortwave radiation, iii) emitted longwave radiation (Lemit),

iv) sensible (Qh) and latent (Qe) heat flux, and v) heat conduction (C) to and from the stick
:::::
wood

:::::
dowel

:
core. The main

components of the moisture budget of the stick
:::::
sensor

:
are i) the incoming precipitation (Pabs), ii) evaporation flux from

the stick
:::::
wood

:::::
dowel (E), and iii) moisture diffusion (D) to and from the stick

:::::
wood

:::::
dowel core. Model outputs include155

temperature and moisture.

The original model expresses all energy fluxes in Wm−2 and all moisture fluxes in kg s−1. However, because our

climate dataset was constructed at an hourly temporal resolution (Duan et al., 2023), we adjusted all model energy

and moisture fluxes to be expressed in Jm−2 h−1 and kg h−1, respectively. Similarly, all model parameters and time-

dependent parameters are expressed in units per hour (Table S3).160

A detailed description of the model formulations is found in (van der Kamp et al., 2017). We present the following minor

modifications:

1) Canopy emissivity (εc):

We introduced an empirical approach to simulate canopy emissivity dependent on leaf and soil emissivity as pro-

posed by Francois et al. (1997):165

εc = (1− cv) · εg + cv · εv (4)
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where: εg [-] is the ground emissivity fixed to 0.95 (Francois et al., 1997), εv [-] is the vegetation emissivity fixed

to 0.965 (Francois et al., 1997), and cv is the contribution coefficient of the vegetation set to 0.5.

2) Precipitable water content (w):

Precipitable water content was determined using Pratra’s empirical approximation (Prata, 1996):170

w = Ce ·HP (5)

where: Ce is an empirical parameter that, unlike in van der Kamp et al. (2017), was set to 46.5 cmKhPa−1 for

robust predictions (Prata, 1996), and HP is the humidity parameter [hPaK−1]:

HP =
e0
Ta

(6)

where e0 [kPa] is saturation vapor pressure calculated with the Magnus-type equation described in Alduchov and175

Eskridge (1996) and Koutsoyiannis (2012). Ta (°C) is the ambient temperature.

3) Attenuation of shortwave radiation by the canopy:

We incorporated the effect of the canopy on shortwave solar radiation using the approach of Musselman et al.

(2015):

Kabs =Kabs−diff · τdiff +Kabs−dir · τdir (7)180

where Kabs is the downwelling shortwave radiation measured at the sub-canopy surface, τdir is the canopy trans-

mittance of the direct shortwave component that equals the sky-view factor (sv) of the canopy, and τdiff is the

canopy transmittance of the diffuse shortwave component calculated as follows:

τdiff = exp

−
ξ ·ϕ · cos(ϕ) ·

(
exp

(
−sv− 0.45

0.29

))
sin(ϕ)

 (8)

where: ξ is an empirical coefficient for calibrated for pine and set to 1.081 (Pomeroy et al., 2009) and ϕ is the solar185

elevation angle in radians.

The model was written in MATLAB (2019), and the ode15s solver was used to solve the differential equation

system of the fuel moisture model.

b) Model calibration – data description:
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Fuel moisture sticks
::::::
sensors

:
(Campbell CS506, 10 h Fuel Moisture Stick

:::::
Sensor) were placed at each site to measure190

fuel moisture content. To simulate the conditions blocks were experiencing, the sticks
::::::
sensors

:
were placed in mesh

bags directly on the ground and annually replaced to avoid measurement errors due to decomposition of the sticks
:::::
wood

:::::
dowel

::::
part

::
of

:::
the

:::::
sensor. Due to the fuel moisture sticks

::::::
sensors’ direct contact with the ground, we regularly recorded

FMC
:::::::
moisture values above the normal operating range (0-70%). We accounted for this discrepancy by normalizing the

recorded values to the operating range.195

c) Model calibration – calibration process:

We
:::::::
followed

::
a
::::::::
two-step

:::::::::
calibration

::::::::
approach,

:::
in

:::::
which

:::
we

::::
first

:::::
fitted

::::::::
moisture

::::::
content

:::::::::
measured

::::
from

::::::::
standard

::::
fuel

:::::::
moisture

::::::
sensors

::::
and

::::
then

::::::
derived

:::::
wood

:::::::
moisture

::::
and

::::::::::
temperature

::
of

::::::::
cylinders

::
of

::::::
similar

::::::::::
dimensions

::
as

:::
our

::::::
blocks

::
as

::
at

:::::
hourly

:::::::::
resolution.

:

:::
We performed a site-specific calibration for all sites except for the wet rainforest site , using hourly time-series of FMC200

(see Model calibration-data description). Observations from 2019 were used for calibration, and the remaining data were

used for visual validation of the model results. The wet rainforest site was excluded from calibration due to malfunction

of the fuel moisture sensor. Instead, calibrated parameters from the dry rainforest site were used to simulate fuel moisture

in the wet rainforest site.

We calibrated five model parameters as in van der Kamp et al. (2017) (Table 1). Fixed parameters (Table S3) and initial205

conditions of the state variables were taken from van der Kamp et al. (2017) and were set equal for all the sites. Forcing

variables (see weather data section) were derived from weather data following the equations suggested by van der Kamp

et al. (2017). Parameter ranges were initially taken from van der Kamp et al. (2017), but we extended the parameter ranges

to account for the variations of the parameters due to local conditions
:::
fact

:::
that

:::::::
sensors

::::
were

::::::
placed

::::::
directly

:::
on

:::
the

::::::
ground

:::::
rather

::::
than

:::::
raised

:::::
above

:::
the

::::::
ground,

::::::
which

::::
may

::::
alter

::::::
original

:::::::
physical

:::::::::
properties

::::::::
described

::
in

::::::::::::::::::::::
van der Kamp et al. (2017)210

:
,
::::
such

::
as

:::::::::::
aerodynamic

::::::::
resistance.

Table 1. Model parameters for calibration

Model parameters Description Units Min Max

A Empirical constant [-] -8 20

B Empirical constant [-] -50 5

d∗s Bulk diffusion coefficient of the stick
::::

dowel m2 d−1 1.0 · 10−7 1.0 · 10−4

mmax Maximum moisture content of the stick
::::
dowel

:
[-] 0.1 2.5

f Fraction between core and outer layer of the stick
:::::
dowel [-] 0.05 0.95

* ds was expressed in log scale to facilitate model calibration. Ranges of the parameters were adjusted from van der Kamp et al. (2017).

We used the nonlinear optimization algorithm in MATLAB (2019) fmincon to find the best possible fits of the parame-

ters (Table 1) and the sum of squared errors (SSE
:::
root

:::::
mean

::::::
square

::::
error

::::::::
(RMSE) as the objective function to compare

9



model output with observations . We estimated the observations’ errors from the fuel moisture accuracy of the CS506

Fuel Moisture sensor manual
:::
(eq.

::
9):215

SEERMSE
::::::

=

√√√√ n∑
i=1

(simulationi − observationi)
2

errori

√√√√ n∑
i=1

(simulationi − observationi)
2

n
:::::::::::::::::::::::::::::::

(9)

The model output corresponding to the observations was the average moisture of the stick
::::
wood

::::::
dowel

:
ms (unitless),

calculated from the simulated moisture content in the core and the outer layer of the stick
::::
wood

::::::
dowel converted to a

fraction of the dry weight of the stick
::::
wood

::::::
dowel:

ms =
(f ·mo +(1− f) ·mc) · 100

ρs ·Vs
(10)220

where: mc [kg] is the moisture content of the core, mo [kg] is the moisture content of the outer layer, f (unitless) is the

fraction of volume between the core and outer layer of the stick
::::
wood

::::::
dowel, ρs is the stick

:::::
wood

:::::
dowel density fixed to

400 kgm−3 (Nelson, 2000), and Vs [cm3] is the volume of the stick
::::
wood

:::::
dowel.

d) Wood microclimate
:::::::
moisture

::::
and

::::::::::
temperature simulations:

We simulated pine block moisture content and temperature using the described mechanistic model and the fitted model225

parameters for each site. Moisture content observations that were measured for pine blocks throughout the experiment

were used as the benchmark reference for model performance. Chamber temperature, the closest variable to wood tem-

perature, was used to benchmark wood temperature simulations. There was no additional automatic model calibration

of the fuel moisture mechanistic model previously described, only minor modifications to capture the benchmark ob-

servations. First, the original geometry of the wood blocks was assumed to be cylindrical with dimensions of 7 cm in230

diameter and 10 cm in length. Additionally, the parameter mmax was manually increased based on field FMC
:::::::
moisture

measurements to allow the blocks to hold more water, and the parameter f was manually reduced to allow a more stable

moisture content compared to the sticks
::::::
sensors

:
due to the higher contribution of the inner core to the final simulated

moisture content. Wood density was set to 480 kgm−3.

2.3 Weather data235

We previously constructed a
::
an

:::::
hourly

:
time series dataset of weather variables across our 4-year (from June 2018 to June 2022)

field experiments (Duan et al., 2023)
:::::
using

::::::
Vaisala

:::::::
Weather

::::::::::
Transmitters

::::::::::
(WXT530),

::::::::
gap-filled

::::
with

:::::::::::::::
publicly-available

:::::::
weather

::::::
datasets

::::::::::::::::
(Duan et al., 2023)

:::::::
(detailed

::::::::
methods

:::::::
available

:::
on

:
https://github.com/Zanne-Lab/WTF-Climate

:
). For this project, we

extracted from Duan et al. (2023) soil surface air temperature, precipitation, air pressure, wind speed, relative humidity, short-

wave radiation, longwave radiation, solar elevation, and solar azimuth as forcing variables for simulations of fuel moisture of240

sticks
:::::
sensor

:::::
wood

::::::
dowels

:
and pine block temperature and moisture.
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We also collected sky view factor data (Table S2) by taking photos of the sky from 1 m above the ground at each site with a

fisheye lens and calculating the sky view factor using image binarization (Honjo et al., 2019).

2.4 Statistical analysis (wood microclimate variables
::::::::
moisture

::::
and

:::::::::::
temperature vs. CO2 fluxes)

To simulate high-resolution CO2 fluxes for each site, we developed a mixed nonlinear model using CO2 flux as the response245

variable, wood moisture content, temperature, and moisture-temperature interaction as fixed effects, and site as a random effect.

This model performed better compared to simpler models that excluded temperature and moisture-temperature interaction

(code available on https://github.com/Zanne-Lab/WTF-Climate-Flux). We used the wood moisture measurements from the

pine experiment and the corresponding chamber temperature observations to construct the model. To account for simulation

uncertainty, we used the Bayesian inference package bmrs (Bürkner, 2017, 2018, 2021) in R version 4.0.4 (R Core Team, 2021).250

The sampler used 5000 iterations, a warm-up period of 2500 simulations, and four chains and assumed a beta distribution for

the response variable. A total of 10000 post-warmup draws were performed. We assessed convergence of the model parameters

using the R diagnostic (R̂ = 1) and tracer plots (Figure S2). Model predictions were obtained using 2000 draws of the parameter

posterior distribution. Bayesian p-value equivalent is calculated with the package bayestestR (Makowski et al., 2019a, b).

Our statistical model of wood microclimate variables and
:::::::
moisture

:::
and

::::::::::
temperature

:::
and

:
CO2 fluxes was based on observa-255

tions of Pinus radiata blocks, a nonnative common woodbait
:::::
readily

::::::::
available

:::::::::
non-native

:::::
wood. To estimate to what extent our

model could capture
:::::
model

:::
skill

::
in

:::::::::
predicting CO2 fluxes of native species, we plotted flux measurements of native species with

our statistical model and simulations. Natives were only deployed at the two extremes of our precipitation gradient (wet rain-

forest and dry savanna), and no species overlapped between sites. We assessed if the relationship between wood microclimate

variables and
:::::::
moisture

::::
and

::::::::::
temperature

:::
and

:
CO2 fluxes measured in pine blocks captured

::::
could

::::::
predict

:
that of native stems260

at the wettest and driest sites. Finally, we assessed if CO2 fluxes from native species could be predicted by this pine-based

statistical model by plotting
::::::
plotted the measured CO2 fluxes and wood microclimate variables

:::::::
moisture

:::
and

::::::::::
temperature

:
of

native stems together with the modeled and predicted
:::::::::::::
model-predicted

:
values.

2.5 Estimated wood mass loss

We estimated the cumulative mass loss of our pine blocks and native stems at each biannual harvesting point by integrating265

our hourly-predicted CO2 fluxes over time. We used the AUC (area under the curve) function and the trapezoid method

implemented in the R package DescTools (Signorell et al., 2023). We then converted these values from µgCO2 g
−1 wood to

gCg−1 C as follows:

µg CO2

g wood
· 1 g CO2

1000µg CO2
· 12.01 g C

44.01 g CO2
· 100 g wood

49.2 g C
=

g C

g C
(11)

First, µgCO2 was converted to gC using the molecular weights of C and CO2. The carbon percentage of Pinus radiata,270

49.2%, was used to convert g wood to gC (Law et al., 2023). The final unit, gCg−1 C, is comparable to the proportional mass

loss measured in field experiments at each harvest time point (Section 2.1.3).
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3 Results

3.1 Wood microclimate
:::::::
moisture

::::
and

:::::::::::
temperature

:
validation

We defined wood microclimate variables as wood moisture content and temperature and derived these variables
::::::
derived

:::::
wood275

:::::::
moisture

:::
and

:::::::::::
temperature from a fuel moisture model (van der Kamp et al., 2017) calibrated with fuel moisture stick

:::::
sensor

measurements along a precipitation gradient in Australia (Figure 3). Throughout the four-year experiment, we observed higher

wood moisture content at sites with higher precipitation (Figure 3 A). We obtained wood moisture content and temperature

simulations that captured major trends in the empirical measurements. Our wood moisture content simulations were sensitive

to rainfall events but did not capture the highest block moisture measurements, especially at the wettest sites (Figure 3 A).280

Moisture values were calculated relative to the dry weight of the wood (eq. 3). For this reason, moisture can reach values over

100%.

Wood temperature simulations were benchmarked against air temperature at the soil surface. Simulated wood temperature

was higher than air temperature at each site and increased with decreasing precipitationregimes, i.e., at dry and wet savannas

(Figure 3 B).285
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Figure 3. Time series of comparisons between pine block simulations and climate observations. (A) Simulated moisture content is shown

in gray and hourly precipitation is shown in blue. Different colors represent different sites and triangles represent wood moisture content

measurements from field experiments used to calibrate simulations. (B) Simulated wood temperature is shown in gray and soil surface air

temperature is shown in red.
::::::
Triangles

::::::::
represent

::
the

::::::::::
temperature

::
of

::
the

:::::::
LI-COR

:::::::
chamber

:::::
during

:::
flux

::::::::::::
measurements.

:::::
Model

::::
skill

::::::
metrics

::::::
(RMSE

:::
and

::::
Bias)

::
are

::::::::
presented

::
in

:::::::::::
supplementary

::::
Table

:::
S6.

3.2 Wood microclimate
:::::::
moisture

::::
and

:::::::::::
temperature

:
vs. CO2 fluxes across the precipitation gradient

We developed a
:::::::
assessed

:::
the

:
statistical relationship between wood microclimate variables and

:::::::
moisture

:::
and

::::::::::
temperature

::::
and

CO2 fluxes across our precipitation gradient. Despite the high uncertainty likely attributed to the high variability of the obser-

vations (Figure 4 A), our results indicated a positive relationship between CO2 fluxes and wood moisture at each of the study

sites (Figure 4 A and Table S1, p-value <0.001). However, the strength of this relationship decreased with decreasing precip-290

itation levels (Table S1). Thus, the savanna sites exhibited lower CO2 fluxes from decaying wood than the rainforest sites.

Wood temperature was also positively correlated with CO2 fluxes (Figure S3), but the correlation was not significant (Table

S1, p-value = 0.348). On the other hand, the interaction between wood moisture content and temperature was a significant

factor in our statistical model (Figure 4 B and Table S1, p-value = 0.001), showing that temperature is relevant, but only when

there is sufficient moisture. Therefore, at dry sites, like dry and wet savanna, the temperature is not strongly correlated to CO2295

flux due to low moisture levels.
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Figure 4. Mixed model of CO2 fluxes (µgCO2 s
−1 g−1) from decaying wood, with wood moisture content and temperature as fixed effects

and site as a random effect. Top row (A): flux predictions against wood moisture content. Bottom row (B): flux predictions against interaction

between wood moisture and temperature using three different simulated temperature levels. Triangles represent pine block measurements

used to construct the model. An outlier in the dry savanna was kept, as there was no indication that there was an error in measurement.

3.3 Time series of CO2 fluxes across the precipitation gradient

We observed patterns in CO2 fluxes , which
:::
that

:
matched seasonal precipitation patterns (Figure 5). For example, the higher

CO2 peaks between 2021 and 2022 in the wet rainforest corresponded to large precipitation events recorded in the area (Figure

3 A). Similarly, in 2022, little precipitation was observed for the dry savanna, which corresponded to lower CO2 fluxes (Figure300

5). This seasonal pattern was present at all sites regardless of precipitation regime, although seasonality was more visible at

the wetter sites. Wood temperature affected CO2 flux at a daily time scale at all sites, which may have amplified seasonality

(Figure 3 B and Figure 5).
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Figure 5. High-resolution time series of CO2 fluxes across the precipitation gradient derived from high-resolution time series of simulated

wood moisture content and temperature of pine blocks. Solid lines represent model means. Uncertainties were not displayed so
:
as
::

to
:::::
make

seasonal trends would be more apparent (Figure S4).

3.4 Simulated and measured wood microclimate
::::::::
moisture

::::
and

:::::::::::
temperature: pines vs. native species across the

precipitation gradient305

Generally, we observed that most native species exhibited a positive relationship between the wood microclimate variables

and
:::::::
moisture

::::
and

::::::::::
temperature

:::
and

:
CO2 fluxes (Figure 6 and Figure S5). This relationship is captured by our statistical model,

as measured native CO2 fluxes are within the uncertainty regions of the CO2 estimations (Figure 6 A, C). However, our

simulations strongly underestimated CO2 fluxes from decaying native trees (Figure 6 B, D). This was mainly observed in the

wet rainforest site (Figure 6 B) and driven by limitations in wood moisture content simulation. In the wet rainforest, simulated310

moisture content reached a maximum of 200%, whereas measured moisture content surpassed 400%. More measurements of

native wood species were captured at the dry savanna site, probably because our simulations successfully captured
::::::::
predicted

low moisture content values (Figure 6 D). An exception was the species Melaleuca viridiflora , whose stem
:::::::
(MEVI),

::::::
whose

::::
wood

:
respiration rates were more sensitive to increasing moisture content than predicted. In temperature-flux comparisons, our

simulations captured a wider range of wood temperature values compared to measurements (Figure S5 B, D), likely because315

measurements were not always taken on site.
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Figure 6. Measured native stem moisture content and CO2 fluxes plotted with estimates from the statistical model (A, C) and time-resolved

simulations (B, D) Panels A and B show
::
for

:
native species found at

::::
from the wet rainforest panels C and D from the dry savanna. The species

name for each code
::
is given in Figure 6 is described in Table S4.

3.5 Simulated cumulative carbon flux and measured wood mass loss over time

Measured mass loss was positively related to simulated cumulative C flux (Figure 7), with a stronger correlation at wetter

sites (R2: 0.92, 0.95, 0.95
:::
0.94, 0.60, 0.54

:::
0.55

:
from wettest to driest). We observed a slight overestimation of CO2 flux from

decaying wood at the wettest sites. The highest proportion of C released was about 86% of the total block mass in the wet320

rainforest after 48 months. In the dry savanna at the same time, just 19% of C was released to the atmosphere. If wood blocks

that were discovered by termites were included in the analysis, we observed a decrease in the strength of the mass loss-flux

correlation (R2: 0.34
:::
0.35, 0.86, 0.58

::::
0.59, 0.29, 0.41

::::
0.42 from wettest to driest) and a clear deviation of

::::
from the 1:1 line. We

additionally ran a linear regression and found a significant interaction between carbon loss and termite activity (p = 0.047
::::
0.042,
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Table S5). This suggests that alternative C loss pathways besides atmospheric flux directly from decaying wood occurred when325

termites participate in wood decay. More termite attacks were recorded at the two driest sites (wet and dry savannas), suggesting

a higher effect of termite activity at dry sites (Figure 7).
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Figure 7. Simulated mean cumulative carbon flux [g g−1 time−1
::::
g g−1] compared with mean measured wood mass loss

[g g−1 time−1
::::
g g−1] of pine blocks. Each point represents a time point in

:
at which pine block mass loss was measured (12, 18, 24, 30,

36, 42, and 48 months). The mean carbon loss between blocks at each time point is plotted and bars represent standard error of the mean.

Colors indicate whether a termite attack was recorded (red) or not (black). Regression lines and R2 are shown for blocks without termite

discovery (black) or all blocks, including those discovered (red).

We observed a similar positive relationship between cumulative CO2 and mass loss for the native woody species, ;
:
however,

cumulative flux did not always equal
::::::::
sometimes

:::::::
differed

:::::
from mass loss (Figure 8). The relationship differed

:::::
varied among

species, suggesting that wood mass from native species
:::::
native

:::::::
species’

:::::
wood was lost in ways other than as CO2 fluxes , or that330

our model based on pine is not sufficient to capture the behavior of native species
:
.
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Figure 8. Simulated mean cumulative carbon flux [g g−1 time−1
::::
g g−1] and mean measured wood mass loss [g g−1 time−1

::::
g g−1] of native

species at two ends of the precipitation gradient. Each point represents a time point in
::
at which pine block mass loss was measured (12, 18,

24 or 36, and 30 or 42 months, Law et al. (2023)). Points represent mean carbon loss at each time point and bars represent standard error of

the mean. Colors indicate whether a termite attack was recorded (red) or not (black). Regression lines and R2 are shown for blocks without

termite discovery (black) or all blocks, including those discovered (red). Species from the Wet rainforest have a blue title background while

species from the Dry savanna have a yellow background.
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4 Discussion

We investigated to what extent wood microclimate variables (wood moisture content and temperature ) can describe CO2

fluxes from decaying wood across a precipitation gradient in Australia. First, we obtained high-temporal resolution wood

microclimate variables
:::::::
moisture

::::
and

::::::::::
temperature

:
from weather data (air temperature, solar radiation, precipitation, relative335

humidity, and wind speed) at each site. To use microclimate variables to estimate CO2 flux, we constructed a linear mixed

model by correlating wood microclimate variables and
:::::::
moisture

::::
and

::::::::::
temperature

::::
and

:
CO2 fluxes. Our linear mixed model

showed a positive correlation between wood microclimate variables and
:::::::
moisture

:::
and

::::::::::
temperature

::::
and

:
CO2 that decreased

in strength as the weather conditions become
:::::::
became drier and hotter (dry savanna). Interestingly, only moisture content

and moisture temperature interaction were significant. The positive relationship between wood microclimate variables and340

:::::::
moisture

:::
and

::::::::::
temperature

::::
and CO2 fluxes captured the relationships for most native tree species at the driest and wettest sites,

with some exceptions, such as Melaleuca viridiflora
::::::
(MEVI). Finally, we estimated cumulative carbon flux and compared it

to measured mass loss. Consistent with our hypothesis, we observed a positive relationship between mass loss and flux, with

termite activity decreasing the amount of carbon released to the atmosphere
::
as

::::
CO2:::::

from
:::
the

:::::
wood. Additionally, we found

longer wood residence times at drier sites. At the dry savanna, only about 19% of the wood mass loss was released to
:
as

:
CO2345

within 48 months, compared to 86% at the wet rainforest. Our simple model based on pine species only captured the general

patterns of mass loss vs. CO2 exhibited by native tree species. For improved results, species-specific response curves might be

required.

4.1 Climate variables as predictors of wood microclimate
:::::::
moisture

::::
and

:::::::::::
temperature

We estimated wood microclimate variables
:::::::
moisture

:::
and

::::::::::
temperature

:
using a mechanistic fuel moisture model (van der Kamp350

et al., 2017) driven by weather data measured with portable weather stations or retrieved from gridded databases.
::
We

::::::::
followed

:
a
:::::::
two-step

::::::::::
calibration

::::::::
approach,

::
in

::::::
which

:::
we

:::
first

:::::
fitted

::::::::
moisture

::::::
content

::::::::
measured

:::::
from

:::::::
standard

::::
fuel

::::::::
moisture

::::::
sensors

::::
and

:::
then

:::::::
derived

:::::
wood

::::::::
moisture

:::
and

:::::::::::
temperature

::
of

::::::::
cylinders

::
of

::::::
similar

::::::::::
dimensions

:::
as

:::
our

::::::
blocks

::
at

::::::
hourly

:::::::::
resolution.

:::::::
Despite

::
the

::::::::
potential

::::::::::
uncertainty

::
in

:::
the

:::::::::::
simulations,

:::
this

:::::::::
calibration

::::::::
approach

::::
was

::::::
chosen

::::
due

::
to

:::
the

::::
low

:::::::
density

::
of

:::::
wood

::::::::
moisture

::::::::::
observations

::::
that

::::::
limited

::::::::::::
representation

::
of

:::::
hourly

:::::::::
dynamics

::
of

:::::
wood

::::::::::
temperature

:::
and

::::::::
moisture

::
in

:
a
:::::
single

::::::::::
simulation.355

Our simulated microclimate variables reproduced the major patterns of the empirical observations (Figure 3), especially

the near-ground air temperature patterns. Our model, however, did not capture the measured moisture content peaks. The

simulated moisture content reached a maximum of 150%, whereas the measured moisture content, especially at the wetter

sites, reached values over 200% and up to 600% in native stems (Figure 6). Wood moisture content was likely sensitive to

other physical processes that are not included in the model. This
:::
For

::::::::
example,

:::
our

::::::
blocks

:::::
were

::::::
placed

:::
flat

:::
on

:::
the

:::::::
ground,360

:::::
which

::::
may

:::::
have

:::::::
resulted

::
in

::::::::
moisture

::::::
uptake

::
by

::::::::
capillary

::::::
action,

::::::
while

:::
our

::::::::::
mechanistic

::::::
model

:::::::::
simulated

:
a
:::::::::
cylindrical

::::
log

::
on

:::
its

:::
side

:::::::
without

::::::::::
accounting

:::
for

:::
this

:::::::
process,

::::::
which

::::
may

::::
have

:::
led

:::
to

::::::::::::
underestimates

:::
of

:::::
wood

:::::::
moisture

:::
in

:::
our

::::::::::
simulations

::::::::::::::::::::::::::::::::::::::
(van Niekerk et al., 2021; Thybring et al., 2022)

:
.
::::
This

::::::::::
discrepancy was more evident at the wetter sites, as simulations at drier

sites (wet and dry savanna) were closer to the empirical observations. In our case, the wetter sites corresponded to forest

19



ecosystems where microclimates formed under the canopy, which could reduce temperature and evaporation, allowing moisture365

content to reach high values (Floriancic et al., 2023). Surface runoff, in combination with the topography of the site, could also

increase the likelihood of high wood moisture content (Shorohova and Kapitsa, 2016); such topography is present at our wet

sites. Additionally, the moisture retention capacity of wood differs among stages of decay (Pichler et al., 2012). This would

have required an additional degradation term in the mechanistic model, which is not typical for fuel moisture models and would

have added more uncertainty to our simulations.
::::::
Finally,

::
to

:::::::
simulate

:::::
more

:::::::
closely

:::
the

:::::::::
conditions

::::::::::
experienced

::
by

::::::::::
deadwood,370

:::::
sensor

::::::
dowels

:::::
were

:::::
placed

:::
on

:::
the

::::::
ground

:::
and

:::
not

::::::
above

::::::
ground

::
as

:::
per

:::::::
standard

::::::::
practice.

:::::::::::
Representing

:::
this

::::::::
variation

::::
may

::::
have

::::::::
influenced

::::::
energy

:::
and

::::::::
moisture

:::::::
transport

:::::::::
described

::
in

:::::::::::::::::::::
van der Kamp et al. (2017)

:
.
:::
We

:::::::
allowed

:::
our

:::::::::
parameters

::
to

::::
take

::
on

::::::
values

::::::
beyond

:::
the

:::::
range

::::::::
proposed

::
by

:::::::::::::::::::::::
van der Kamp et al. (2017)

:::::
during

:::::::::
calibration

::
to

:::::::
account

::
for

::::
this

:::::
issue.

Nevertheless, our simulated wood microclimate variables
:::::::
moisture

::::
and

::::::::::
temperature were still robust. For example, our sim-

ulations showed higher temperatures in wood compared to soil surface air temperature, increasing especially in the hotter375

and drier sites (Figure 4). This result is consistent with wood thermodynamics by
::
in which wood is heated by incoming ra-

diation during the day, and heat is stored and slowly released during the night.
::::
Sites

::::
with

::::::
higher

::::::
canopy

:::::
cover

:::::::::::
experienced

::::::
smaller

::::::::::
temperature

::::::
ranges,

:::
as

:::::
shade

::::::
buffers

::::::::::
temperature

::::::::
extremes

:::::::::::::::::::::::
(Brischke and Rapp, 2008b)

:
. Our wood moisture simula-

tions closely resembled the measured moisture content below 50%, similar to Green et al. (2022). Accurate predictions at

these low moisture levels are biologically relevant due to their role in limiting wood decomposition. Excessively high moisture380

content in wood was not captured by our simulations. We decided not to include ,
:::
but

::::
may

:::
not

:::::
affect

::::
our

:::::::::
predictions

::
of

:::::
CO2

:::
flux

::::
very

:::::
much

::
if

:::::::::
respiration

::
is

:::
less

::::::::
sensitive

::
to

:::::::
moisture

:::::::
change

::
at

::::
high

:::::::
moisture

::::::::
contents.

:::
We

:::
did

:::
not

:::::::
address

:::
this

:::::
issue

::::
with

additional model terms, such as soil moisture, also because we did not have a complete dataset at our desired temporal and

spatial resolution.

4.2 Climate-derived wood microclimate
:::::::
moisture

::::
and

:::::::::::
temperature as a predictor of CO2 fluxes from decaying wood385

We found a positive relationship between wood microclimate variables and
:::::::
moisture

:::
and

::::::::::
temperature

:::
and CO2 fluxes across the

precipitation gradient, and the strength of this relationship decreased at low precipitation sites. This result was expected as wood

microclimate variables
:::::::
moisture

::::
and

::::::::::
temperature are known to be important drivers of deadwood degradation (Mackensen et al., 2003; Kahl et al., 2015; Wang et al., 2023)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Viitanen, 1997; Mackensen et al., 2003; Brischke and Rapp, 2008a; Kahl et al., 2015; Wang et al., 2023), influencing micro-

bial and invertebrate-driven degradation processes
:::::
decay (Progar et al., 2000; Zanne et al., 2022). Moisture and temperature390

modulate enzyme production and activity and determine microhabitats suitable for microbial and invertebrate activity (Yoon

et al., 2015).

As observed in other tropical ecosystems (Wang et al., 2023), we found that wood moisture was an important limiting

factor of deadwood degradation at our sites (Table S1, p-value <0.001). Wood moisture controls saprophytic microbial activity

(Cheesman et al., 2018) and determines the dominant fungi in decaying wood (Progar et al., 2000; Barker, 2008; Thybring395

et al., 2018). Bond-Lamberty et al. (2002) found a similar strong correlation between wood moisture and CO2 respiration

fluxes but only below a moisture content of 43%. Similarly, we observed increasing uncertainty in our CO2 predictions with

increasing wood moisture content. As wood moisture content increases, the relative importance of wood moisture
::
its

:::::::
relative
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:::::::::
importance decreases, and other factors, such as wood traits (wood quality, chemical composition, and stoichiometry), become

more relevant (González et al., 2008; Risch et al., 2022; Law et al., 2023). Additionally, high wood moisture contents close to400

saturation can slow wood decay rates due to anaerobic processes becoming dominant (Piaszczyk et al., 2022).

Chambers et al. (2000) suggested
:::::::::::::::::::
Chambers et al. (2000)

::::::::
suggested

::::
that temperature is a better predictor of CO2 fluxes in

temperate forests than moisture, arguing that sufficient moisture must be available for trees to grow in the first place. However,

in contrast to temperate forests, where wood degradation is limited by temperature, our tropical sites (from wet rainforest to

dry savanna) experience relatively similar mean temperatures throughout the year (Figure 3 B), but are subject to very different405

moisture conditions (Figure 3 A). For this reason, moisture is a limiting factor across our sites and thus is
:
is
::::
thus

:
the best pre-

dictor for
::
of CO2 fluxes. Similarly, Rowland et al. (2013) found that moisture is the limiting factor for deadwood decay in trop-

ical and subtropical forests. However, temperature variation can interact with moisture and cause CO2 fluxes to be non-linear

(Wang et al., 2002; González et al., 2008; Forrester et al., 2012). This
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Viitanen, 1997; Wang et al., 2002; González et al., 2008; Forrester et al., 2012)

:
.
::::
This

::::::
pattern is consistent with what we observed: the interaction between wood moisture content and temperature was signifi-410

cant at all sites (Table S1, p-value <0.001)
:
, and the relative role of temperature in wood decay increases after a certain moisture

threshold is reached (Figure 4 B).

4.3 Deadwood fate under a precipitation gradient in Australia

An essential question in tropical forest ecosystems is whether the mass loss of woody debris is released to the atmosphere as

CO2 or stored in microbial/invertebrate biomass or some other stable form of C (Cornwell et al., 2009). We answered this ques-415

tion by combining our linear mixed model and high-temporal-resolution simulations of wood microclimate variables
:::::::
moisture

:::
and

::::::::::
temperature. Despite high uncertainty at any given time, when summing CO2 flux estimates over long periods of time, the

fine-scale variation averages out, and estimated cumulative flux was comparable to mass loss of pine blocks (Figure 7). We

observed that woody debris
::::::::
deadwood

:
has longer residence times in dry, hot sites (wet and dry savanna), and wood decay is

enhanced by moisture
:
,
::
up

::
to
::
a
:::::
point, in wet sites (wet and dry rainforest). Up to 86% of the deadwood is degraded and released420

as CO2 in the wet rainforest, but less than 19% was released in the dry savanna (Figure 7).

Our model predictions based on wood microclimate variables
:::::::
moisture

:::
and

::::::::::
temperature

:
do not capture invertebrate activity

influencing deadwood decay. When termites are involved in the decay of pine blocks, termite activity lead
::::
leads to deviations

from a 1:1 relationship between cumulative CO2 flux and wood mass loss. This suggests that C is lost through other processes

which might include leaching, volatilization (Read et al., 2022), and fragmentation (Yoon et al., 2015). These processes may425

eventually release carbon at locations other than the wood block, for example, termite mounds (Jamali et al., 2013; Clement

et al., 2021).

The underprediction of cumulative CO2 flux per
::::::
relative

::
to

:
mass loss observed in the

:::::
some native stems (Figure 8) suggests

that other biotic factors may need to
:::::
should

:
be included in statistical models when extrapolating beyond wood used for calibra-

tion (here, pine) (Jomura et al., 2008). The strength of wood moisture content and temperature influence is likely to vary among430

tree species (Herrmann and Bauhus, 2013; Wu et al., 2021). Wood traits such as wood nutrient content, quality, and woody

debris geometry can be important drivers of CWD decomposition (Zhou et al., 2007; Weedon et al., 2009; Hu et al., 2018;
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Risch et al., 2022; Kipping et al., 2022). They influence the relative contribution of wood-degrading organisms (bacteria, fungi,

and invertebrates such as termites) and CO2 from wood decomposition. Cornwell et al. (2009) and Law et al. (2023) suggest

wood traits,
:::
that

:::::
wood

:::::
traits

:
are likely the main determinants of deadwood fate in tropical forests. We found

:::
that

:
a positive435

relationship between cumulative CO2 and mass loss holds for most of the native species, ;
:
however, some species release less

CO2 per unit mass loss. This result suggested
:::::::
suggests

:
that the interplay between weather, site conditions, biotic interactions,

and specific wood traits (wood quality, chemical composition, and stoichiometry) is essential to determine CO2 fluxes from

tropical ecosystems (Law et al., 2023). For example, mass loss in tree species with dense wood are not accounted for in
:::
was

:::
not

::::
fully

:::::::
captured

::
in

:::
our

:
flux predictions (Figure 8: Eucalyptus cullenii

:::::::
(EUCU), Eucalyptus chlorophylla

::::::
(EULE), Terminalia440

aridicola )
:::::::
(TEAR)),

:::::
likely

::::
due

::
to

:::
the

:::::
lower

:::::::
capacity

:::
of

:::::
dense

::::::::
structures

::
to

::::
hold

:::::
water

:::::::::::::::::::
(Thybring et al., 2022). There are also

similar discrepancies for tree species with a high syringyl to guaiacyl (S/G) ratio (Cardwelia sublimis
:::::::
(CASU), Normanbya

normanbyi )
::::::::
(NONO)),

:
and species with high nitrogen content (Rockinghamia angustifolia

:::::::
(ROAN), Petalostigma banksii

::::::
(PEBA)).

5 Conclusions and implications for global carbon cycling445

Wood microclimate variables, defined as wood moisture content and temperature ,
:::::::
moisture

::::
and

::::::::::
temperature

:
are essential

drivers of deadwood degradation in forest ecosystems. We found that wood moisture content and the interaction between

wood moisture content and temperature are the main drivers determining the fate of deadwood degradation along a pre-

cipitation gradient in Australia. Because of the high variability in ecosystems and climates within this tropical region, it

is essential to consider wood microclimate variables
:::::::
moisture

:::
and

::::::::::
temperature

:
to improve CO2 predictions from decaying450

woody debris. However, wood microclimate variables
:::::::::
deadwood.

::::::::::::::
Ecosystem-scale

::::::
carbon

:::::::
models

::::
like

:::
the

:::::::
YASSO

::::::
model

:::::::::::::::
(Liski et al., 2005)

:::
and

:::
the

:::::
CLM

::::
soil

::::::
module

::::::::::::::::::::
(Lawrence et al., 2019)

::::
have

::::::
already

:::::::::::
incorporated

:::::::::
deadwood

::::::::::::
decomposition

:::
as

:
a
:::::::
function

:::
of

::::::::
microbial

:::::::
activity

:::::::
affected

:::
by

::::::
climate

::::::::
variables

::::
but

::::
have

:::
not

::::
yet

:::::::
explored

::::
the

::::::
effects

::
of

:::::
wood

::::::::
moisture

::::
and

::::::::::
temperature

::
on

:::::::::
microbial

::::::::
processes

::::::
related

::
to
::::::

wood
:::::
decay.

:::::
More

::::::::
progress

:::
has

:::::
been

:::::::
achieved

:::
in

:::
the

::::
field

::
of

:::::
wood

::::::::
material

:::::::
sciences,

::::::
where

:::
the

:::::::
positive

::::::::::
correlations

:::::::
between

:::::
wood

::::::::
moisture

:::
and

:::::::::::
temperature

:::
and

:::::
wood

::::::
decay

::::
have

::::
been

::::::::::::
demonstrated455

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brischke et al., 2006; Brischke and Rapp, 2008a, b; van Niekerk et al., 2021)

:
.
:::
Our

:::::
work

::::::
extends

:::::
these

:::::::
findings

::
by

::::::::::
quantifying

::
the

::::::::
strength

::
of

:::
the

:::::::::::
relationship

:::::::
between

:::::
wood

::::::::
moisture

::::
and

::::::::::
temperature

::::
and

:::::
CO2:::::

fluxes
:::::

from
:::::::::
deadwood

:::
in

:::::::
response

:::
to

::::::::::
precipitation

::::
and

::::::::
microbial

::::
and

:::::
insect

::::::::
activities.

::::::
Wood

::::::::
moisture

:::
and

:::::::::::
temperature alone are insufficient to predict the CO2

fluxes,
:::::::::
especially

:
from diverse native woody species. Additionally, wood

:::::
Wood traits are likely to be important drivers of

CWD fate in tropical forests (Cornwell et al., 2009; Law et al., 2023) and may improve CO2 predictions in tropical forest460

ecosystems. Factors such as termite, fungal, and bacterial activity, their climate sensitivity (Zanne et al., 2022), as well as wood

traits, such as wood quality, chemical composition, and stoichiometry (Law et al., 2023), and their interplay with climate need

to be implemented in future ecosystem models to predict more accurately the fate of woody debris
::::::::
deadwood

:
in tropical forests

and its contribution to the global carbon cycle (Cornwell et al., 2009).
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