Preprints
https://doi.org/10.5194/egusphere-2023-1875
https://doi.org/10.5194/egusphere-2023-1875
26 Sep 2023
 | 26 Sep 2023

Multifactorial effects of warming, low irradiance, and low salinity on Arctic kelps

Anaïs Lebrun, Cale Andrew Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau

Abstract. The Arctic is projected to warm by 2 to 5 °C by the end of the century. Warming causes melting of glaciers, shrinking of the areas covered by sea ice, and increased terrestrial runoff from snowfields and permafrost thawing. Warming, decreasing coastal underwater irradiance, and lower salinity are potentially threatening polar marine organisms, including kelps, that are key species of hard-bottom shallow communities. The present study investigates the physiological responses of four kelp species (Alaria esculenta, Laminaria digitata, Saccharina latissima, and Hedophyllum nigripes) to warming, low irradiance, and low salinity through a perturbation experiment conducted in ex situ mesocosms. Kelps were exposed during six weeks to four experimental treatments: an unmanipulated control, a warming condition mimicking future coastlines unimpacted by glacier melting under the CO2 emission scenario SSP5-8.5, and two multifactorial conditions combining warming, low salinity, and low irradiance reproducing the future coastal Arctic exposed to terrestrial runoff following two CO2 emission scenarios (SSP2-4.5 and SSP5-8.5). The physiological effects on A. esculenta, L. digitata and S. latissima were investigated and gene expression patterns of S. latissima and H. nigripes were analyzed. Specimens of A. esculenta increased their chlorophyll a content when exposed to low irradiance conditions, suggesting that they may be resilient to an increase in glacier and river runoff and become more dominant at greater depths. S. latissima showed a lower carbon:nitrogen (C:N) ratio at higher nitrate concentrations, suggesting coastal erosion and permafrost thawing could benefit the organism in the future Arctic. In contrast, L. digitata showed no responses to the conditions tested on any of the investigated physiological parameters. The gene expressions of H. nigripes and S. latissima underscores their ability and underline temperature as a key influencing factor. Based on these results, it is expected that kelp communities will undergo changes in species composition that will vary at local scale as a function of the changes in environmental drivers. For future research, potential cascading effects on the associated fauna and the whole ecosystem are important to anticipate the ecological, cultural, and economic impacts of climate change in the Arctic.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

25 Oct 2024
Multifactorial effects of warming, low irradiance, and low salinity on Arctic kelps
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024,https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Anaïs Lebrun, Cale Andrew Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1875', Anonymous Referee #1, 03 Oct 2023
  • RC2: 'Comment on egusphere-2023-1875', Anonymous Referee #2, 29 Apr 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1875', Anonymous Referee #1, 03 Oct 2023
  • RC2: 'Comment on egusphere-2023-1875', Anonymous Referee #2, 29 Apr 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (01 Aug 2024) by Andrew Thurber
AR by Cale Miller on behalf of the Authors (02 Aug 2024)  Author's response   Author's tracked changes 
EF by Polina Shvedko (02 Aug 2024)  Manuscript 
ED: Publish subject to minor revisions (review by editor) (08 Aug 2024) by Andrew Thurber
AR by Cale Miller on behalf of the Authors (28 Aug 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (06 Oct 2024) by Andrew Thurber
AR by Cale Miller on behalf of the Authors (13 Oct 2024)

Journal article(s) based on this preprint

25 Oct 2024
Multifactorial effects of warming, low irradiance, and low salinity on Arctic kelps
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024,https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Anaïs Lebrun, Cale Andrew Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Anaïs Lebrun, Cale Andrew Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau

Viewed

Total article views: 681 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
500 136 45 681 43 43
  • HTML: 500
  • PDF: 136
  • XML: 45
  • Total: 681
  • BibTeX: 43
  • EndNote: 43
Views and downloads (calculated since 26 Sep 2023)
Cumulative views and downloads (calculated since 26 Sep 2023)

Viewed (geographical distribution)

Total article views: 685 (including HTML, PDF, and XML) Thereof 685 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 25 Oct 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We tested the effects of warming, low salinity, and low irradiance on Arctic kelps. We show that Alaria esculenta is adapted to low light conditions, which might explain why it is becoming dominant at depth. Saccharina latissima exhibited nitrogen limitation suggesting coastal erosion and permafrost thawing could benefit it. Laminaria digitata did not respond to the treatments. Gene expression of Hedophyllum nigripes and S. latissima indicated acclimation to the experimental treatments.