Preprints
https://doi.org/10.5194/egusphere-2023-186
https://doi.org/10.5194/egusphere-2023-186
28 Feb 2023
 | 28 Feb 2023

Towards near-real time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 Pandemic

Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando

Abstract. The 2020 COVID-19 crisis caused an unprecedented drop in anthropogenic emissions of air pollutants and greenhouse gases. Given that emissions estimates from official national inventories for the year 2020 were not reported until two years later, new and non-traditional datasets to estimate near-real time emissions became particularly relevant and widely used in international monitoring and modelling activities during the pandemic. This study investigates the impact of the COVID-19 pandemic on 2020 European (the 27 EU Member States and the UK) emissions by comparing a selection of such near-real time emission estimates, with the official inventories that were subsequently reported in 2022 under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the United Nations Framework Convention on Climate Change (UNFCCC). Results indicate that annual changes in total 2020 emissions reported by official and near-real time estimates are fairly in line for most of the chemical species, with NOx and fossil fuel CO2 being reported as the ones that experienced the largest reduction in Europe in all cases. However, large discrepancies arise between the official and non-official datasets when comparing annual results at the sector and country level, indicating that caution should be exercised when estimating changes in emissions using specific near-real time activity datasets, such as time mobility data derived from smartphones. Main examples of these differences are observed for manufacturing industry NOx (relative changes ranging between -21.4 % and -5.4 %) and road transport CO2 (relative changes ranging between -29.3 % and 5.6 %) total European emissions. Additionally, significant discrepancies are observed between the quarterly and monthly distribution of emissions drops reported by the various near-real time inventories, with differences up to a factor of 1.5 for total NOx during April 2020, when restrictions were at their maximum. For residential combustion, shipping and public energy industry, results indicate that changes in emissions that occurred between 2019 and 2020 were mainly dominated by non-COVID-19 factors including meteorology, the implementation of the Global Sulphur Cap and the shutdown of coal-fired power plants as part of national decarbonization efforts, respectively. The potential increase in NMVOC emissions from the intensive use of personal protective equipment such as hand sanitizer gels is considered in a heterogeneous way across countries in official reported inventories, indicating the need for some countries to base their calculations on more advanced methods. The findings of this study can be used to better understand the uncertainties of near-real time emissions and how such emissions could be used in the future to provide timely updates to emission datasets that are critical for modelling and monitoring applications.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

19 Jul 2023
Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8081–8101, https://doi.org/10.5194/acp-23-8081-2023,https://doi.org/10.5194/acp-23-8081-2023, 2023
Short summary
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-186', Anonymous Referee #1, 21 Apr 2023
  • RC2: 'Comment on egusphere-2023-186', Anonymous Referee #2, 22 Apr 2023
  • AC1: 'Comment on egusphere-2023-186', Marc Guevara, 30 May 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-186', Anonymous Referee #1, 21 Apr 2023
  • RC2: 'Comment on egusphere-2023-186', Anonymous Referee #2, 22 Apr 2023
  • AC1: 'Comment on egusphere-2023-186', Marc Guevara, 30 May 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Marc Guevara on behalf of the Authors (30 May 2023)  Author's response   Author's tracked changes   Manuscript 
EF by Sarah Buchmann (31 May 2023)  Supplement 
ED: Publish as is (08 Jun 2023) by Frank Dentener
AR by Marc Guevara on behalf of the Authors (23 Jun 2023)

Journal article(s) based on this preprint

19 Jul 2023
Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8081–8101, https://doi.org/10.5194/acp-23-8081-2023,https://doi.org/10.5194/acp-23-8081-2023, 2023
Short summary
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando

Viewed

Total article views: 592 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
423 151 18 592 40 9 13
  • HTML: 423
  • PDF: 151
  • XML: 18
  • Total: 592
  • Supplement: 40
  • BibTeX: 9
  • EndNote: 13
Views and downloads (calculated since 28 Feb 2023)
Cumulative views and downloads (calculated since 28 Feb 2023)

Viewed (geographical distribution)

Total article views: 589 (including HTML, PDF, and XML) Thereof 589 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study provides an inter-comparison of European 2020 emission changes derived from official inventories, which are reported by countries under the framework of several international conventions and directives, and non-official near-real time estimates, the use of which have significantly grown since the COVID-19 outbreak. The results of the work are used to produce recommendations on how best to approach and make use near-real time emissions for modelling and monitoring applications.