Preprints
https://doi.org/10.5194/egusphere-2023-1755
https://doi.org/10.5194/egusphere-2023-1755
21 Aug 2023
 | 21 Aug 2023

Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil

Louise Akemi Kuana, Arlan Scortegagna Almeida, Emilio Graciliano Ferreira Mercuri, and Steffen Manfred Noe

Abstract. Regionalization methods dependent on hydrological models comprise techniques for transferring calibrated parameters in instrumented watersheds (donor basins) to non-instrumented watersheds (target basins). This study aims to evaluate regionalization methods for transferring GR4J parameters and predict river flow in catchments from the south of Brazil. We created a dataset for Paraná state with daily hydrological time series (precipitation, evapotranspiration, and river flow) and watershed physiographic and climatological indices for 126 catchments. Rigorous quality control techniques were applied to recover the rainfall history from 1979 to 2020, and manual efforts were made to georeference the fluviometric stations. The regionalization methods compared in this study are based on: simple spatial proximity, physiographic-climatic similarity and regression by Random Forest. Direct regression of Q95 was calculated using Random Forest and compared with indirect methods, i.e. using regionalization of GR4J parameters. A set of 100 basins were used to train the regionalization models and another 26 catchments, pseudo non-instrumented, were used to evaluate and compare the performance of regionalizations. The GR4J model showed acceptable performances for the sample of 126 catchments, 65 % of watersheds presented log-transformed Nash-Sutcliffe coefficient greater than 0.70 during validation period. According to evaluation carried out for the sample of 26 basins, regionalization based on physiographic-climatic similarity showed to be the most robust method for prediction of daily and Q95 reference flow in basins from Paraná state. When increasing the number of donor basins, the method based on spatial proximity has comparable performance to the method based on physiographic-climatic similarity. Based on the physiographic-climatic characteristics of the basins, it was possible to classify 6 distinct groups of watersheds in Paraná. The basins showed similarities in their size, forest cover, urban area, number of days with more than 150 mm of precipitation, and average duration of consecutive dry days.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

29 Jul 2024
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024,https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emilio Graciliano Ferreira Mercuri, and Steffen Manfred Noe

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2023-1755', John Ding, 23 Aug 2023
    • AC1: 'Reply on CC1', Emilio Graciliano Ferreira Mercuri, 28 Aug 2023
  • RC1: 'Comment on egusphere-2023-1755', Anonymous Referee #1, 06 Oct 2023
    • AC2: 'Reply on RC1', Emilio Graciliano Ferreira Mercuri, 13 Oct 2023
  • RC2: 'Comment on egusphere-2023-1755', Juraj Parajka, 20 Oct 2023
    • AC3: 'Reply on RC2', Emilio Graciliano Ferreira Mercuri, 10 Nov 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2023-1755', John Ding, 23 Aug 2023
    • AC1: 'Reply on CC1', Emilio Graciliano Ferreira Mercuri, 28 Aug 2023
  • RC1: 'Comment on egusphere-2023-1755', Anonymous Referee #1, 06 Oct 2023
    • AC2: 'Reply on RC1', Emilio Graciliano Ferreira Mercuri, 13 Oct 2023
  • RC2: 'Comment on egusphere-2023-1755', Juraj Parajka, 20 Oct 2023
    • AC3: 'Reply on RC2', Emilio Graciliano Ferreira Mercuri, 10 Nov 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (17 Dec 2023) by Frederiek Sperna Weiland
AR by Emilio Graciliano Ferreira Mercuri on behalf of the Authors (19 Jan 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (16 Feb 2024) by Frederiek Sperna Weiland
RR by Juraj Parajka (04 Mar 2024)
RR by Anonymous Referee #1 (26 Mar 2024)
ED: Publish subject to revisions (further review by editor and referees) (19 Apr 2024) by Frederiek Sperna Weiland
AR by Emilio Graciliano Ferreira Mercuri on behalf of the Authors (31 May 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (10 Jun 2024) by Frederiek Sperna Weiland
AR by Emilio Graciliano Ferreira Mercuri on behalf of the Authors (12 Jun 2024)  Manuscript 

Journal article(s) based on this preprint

29 Jul 2024
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024,https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emilio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emilio Graciliano Ferreira Mercuri, and Steffen Manfred Noe

Viewed

Total article views: 646 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
427 177 42 646 24 30
  • HTML: 427
  • PDF: 177
  • XML: 42
  • Total: 646
  • BibTeX: 24
  • EndNote: 30
Views and downloads (calculated since 21 Aug 2023)
Cumulative views and downloads (calculated since 21 Aug 2023)

Viewed (geographical distribution)

Total article views: 637 (including HTML, PDF, and XML) Thereof 637 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 04 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The authors compared different regionalization methods for river flow prediction in watersheds with few data. We collected data on precipitation, evapotranspiration, river flow, and geographical and climatic factors for 126 catchments in the Paraná state, Brazil. The regionalization method based on physiographic-climatic similarity showed to be the most robust for predicting daily and Q95 reference flow. We also found patterns in data, grouping locations based on similarities.