Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-1477
https://doi.org/10.5194/egusphere-2023-1477
07 Sep 2023
 | 07 Sep 2023

Hector V3.1.1: functionality and performance of a reduced-complexity climate model

Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steve J. Smith, Claudia Tebaldi, Dawn Woodard, and Ben Bond-Lamberty

Abstract. Hector, an open-source reduced complexity climate-carbon cycle model. Hector is a computationally efficient source of climate information, capable of completing a run in a fraction of a second. Hector models critical Earth system processes on a global and annual basis. Here we present an updated version of the model, Hector V3. In this manuscript, we document Hector’s new features, and implementation of new science (e.g., radiative forcing calculations, carbon cycle, etc.). Hector V3 results are in good agreement with historical observations of CO2 concentrations and global mean surface temperature, and its future temperature projections are consistent with more complex Earth System Model output data from the Sixth Coupled Model Intercomparison Project. We document that Hector V3 is a flexible, performant, and robust simulator of contemporary and 21st-century global climate, and in closing, discuss future areas of improvement and research with respect to the model’s scientific, stakeholder, and educational priorities.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

20 Jun 2024
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024,https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Hector is an easy-to-use global climate-carbon cycle model. With its quick run time Hector can...
Share