Preprints
https://doi.org/10.5194/egusphere-2023-1385
https://doi.org/10.5194/egusphere-2023-1385
18 Jul 2023
 | 18 Jul 2023

MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion

Edwin Goh, Alice R. Yepremyan, Jinbo Wang, and Brian Wilson

Abstract. This study investigates the use of masked autoencoders (MAE) to address the challenge of filling gaps in high-resolution (1 km) sea surface temperature (SST) fields caused by cloud cover, which often results in gaps in the SST data and/or blurry imagery in blended SST products. Our study demonstrates that MAE, a deep learning model, can efficiently learn the anisotropic nature of small-scale ocean fronts from numerical simulations and reconstruct the artificially masked SST images. The MAE model is trained and evaluated on synthetic SST fields and tested on real satellite SST data from VIIRS sensor on Suomi-NPP satellite. It is demonstrated that the MAE model trained on numerical simulations can provide a computationally-efficient alternative for filling gaps in satellite SST. MAE can reconstruct randomly occluded images with a root mean squared error (RMSE) of under 0.2 °C for masking ratios of up to 80 %. It has exceptional efficiency, requiring three orders of magnitude (a factor of 5000) less time. The ability to reconstruct high-resolution SST fields under cloud cover has important implications for understanding and predicting global and regional climates, and detecting small-scale SST fronts that play a crucial role in the exchange of heat, carbon, and nutrients between the ocean surface and deeper layers. Our findings highlight the potential of deep learning models such as MAE to improve the accuracy and resolution of SST data at kilometer scales. It presents a promising avenue for future research in the field of small-scale ocean remote sensing analyses.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

24 Oct 2024
MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion
Edwin Goh, Alice Yepremyan, Jinbo Wang, and Brian Wilson
Ocean Sci., 20, 1309–1323, https://doi.org/10.5194/os-20-1309-2024,https://doi.org/10.5194/os-20-1309-2024, 2024
Short summary
Edwin Goh, Alice R. Yepremyan, Jinbo Wang, and Brian Wilson

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1385', Anonymous Referee #1, 18 Oct 2023
    • AC1: 'Reply on RC1', Jinbo Wang, 17 Jan 2024
  • RC2: 'Comment on egusphere-2023-1385', Anonymous Referee #2, 11 Dec 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1385', Anonymous Referee #1, 18 Oct 2023
    • AC1: 'Reply on RC1', Jinbo Wang, 17 Jan 2024
  • RC2: 'Comment on egusphere-2023-1385', Anonymous Referee #2, 11 Dec 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Jinbo Wang on behalf of the Authors (17 Jan 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (18 Jan 2024) by Alexander Barth
RR by Anonymous Referee #1 (05 Feb 2024)
RR by Anonymous Referee #2 (05 Feb 2024)
ED: Reconsider after major revisions (06 Feb 2024) by Alexander Barth
AR by Jinbo Wang on behalf of the Authors (27 Jun 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (01 Jul 2024) by Alexander Barth
AR by Edwin Goh on behalf of the Authors (12 Jul 2024)  Manuscript 

Journal article(s) based on this preprint

24 Oct 2024
MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion
Edwin Goh, Alice Yepremyan, Jinbo Wang, and Brian Wilson
Ocean Sci., 20, 1309–1323, https://doi.org/10.5194/os-20-1309-2024,https://doi.org/10.5194/os-20-1309-2024, 2024
Short summary
Edwin Goh, Alice R. Yepremyan, Jinbo Wang, and Brian Wilson
Edwin Goh, Alice R. Yepremyan, Jinbo Wang, and Brian Wilson

Viewed

Total article views: 1,055 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
651 357 47 1,055 51 33
  • HTML: 651
  • PDF: 357
  • XML: 47
  • Total: 1,055
  • BibTeX: 51
  • EndNote: 33
Views and downloads (calculated since 18 Jul 2023)
Cumulative views and downloads (calculated since 18 Jul 2023)

Viewed (geographical distribution)

Total article views: 1,027 (including HTML, PDF, and XML) Thereof 1,027 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 24 Oct 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Our research used an AI model to fill in missing parts of sea temperature maps caused by cloud cover. We found MAE can recreate missing SST with less than 0.2 °C error, even when 80 % is missing, and does this 5000 times faster than conventional methods. This can enhance our ability in monitoring global small-scale ocean fronts that affect heat, carbon, and nutrient exchange in the ocean. The method's accuracy and efficiency are promising for future ocean research.