Preprints
https://doi.org/10.5194/egusphere-2023-1366
https://doi.org/10.5194/egusphere-2023-1366
27 Jul 2023
 | 27 Jul 2023

A new drought index fitted to clay shrinkage induced subsidence over France: benefits of interactive leaf area index

Sophie Barthélémy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie

Abstract. Clay shrinkage, which consists of a reduction in the volume of clay soils during dry periods, can affect buildings and cause subsidence damage. In France, losses due to subsidence are estimated at more than 16 billion € for the period 1989–2021 (CCR, 2021), and are expected to increase under the effect of climate warming. This work aims to improve the current understanding of the conditions triggering subsidence by proposing an innovative drought index. We use a daily Soil Wetness Index (SWI) to develop a new annual drought index that can be related to subsidence damage. The SWI is derived from simulations of soil moisture profiles from the Interactions between Soil, Biosphere, Atmosphere (ISBA) land surface model developed by Météo-France. The ability of the drought index to correlate with insurance claims data is assessed by calculating the Kendall rank correlation over twenty municipalities in France. The insurance data, aggregated by year and municipality, are provided by the Caisse Centrale de Réassurance (CCR). A total of 1200 configurations of the drought index are considered. They are generated by combining different calculation methods, ISBA simulation settings, soil model layers, and drought percentile thresholds. The analysis includes a comparison with the independent claim data of six additional municipalities, and to a record of official “CatNat” decrees, useful for the analysis. The best results are obtained for drought magnitudes based on SWI values of the 0.8 m to 1.0 m deep soil layer, an ISBA simulation with interactive leaf area index (LAI), and consideration of low drought SWI percentile thresholds. Comparison with claim data shows that drought magnitude is able to identify subsidence events while being spatially consistent. This drought magnitude index provides more insight into subsidence triggers while benefiting from advanced land surface modeling schemes (interactive LAI, multi-layer soil). This work paves the way for more reliable damage estimates.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

21 Mar 2024
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024,https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of...
Share