Preprints
https://doi.org/10.5194/egusphere-2023-1343
https://doi.org/10.5194/egusphere-2023-1343
25 Aug 2023
 | 25 Aug 2023

U-Plume: Automated algorithm for plume detection and source quantification by satellite point-source imagers

Jack Bruno, Dylan Jervis, Daniel Varon, and Daniel Jacob

Abstract. Current methods for detecting atmospheric plumes and inferring point source rates from high-resolution satellite imagery are labor intensive and not scalable to the growing satellite dataset available for methane point sources. Here we present a two-step algorithm called U-Plume for automated detection and quantification of point sources from satellite imagery. The first step delivers plume detection and delineation (masking) with a machine learning U-Net architecture for image segmentation. The second step quantifies point source rate from the masked plume using wind speed information and either a convolution neural network (CNN) or a physics-based Integrated Mass Enhancement (IME) method. The algorithm can process 62 128×128 images per second on a single core. We train the algorithm with large-eddy simulations of methane plumes superimposed on noisy and variable methane background scenes from the GHGSat-C1 satellite instrument. We introduce the concept of point source observability Ops = Q/(UWΔB) as a single dimensionless number to predict plume detectability and source rate quantification error from an instrument as a function of source rate Q, wind speed U, instrument pixel size W, and instrument-dependent background noise ΔB. We show that Ops can powerfully diagnose the ability of an imaging instrument to observe point sources of a certain magnitude under given conditions. U-Plume successfully detects and masks plumes from sources as small as 100 kg h-1 over surfaces with low background noise and succeeds for larger point sources over surfaces with substantial background noise. We find that the IME method for source quantification is unbiased over the full range of source rates while the CNN method is biased toward the mean of its training range. The total error in source rate quantification is dominated by wind speed at low wind speeds and by the masking algorithm at high wind speeds. A wind speed of 2–4 m s-1 is optimal for detection and quantification of point sources from satellite data.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

06 May 2024
U-Plume: automated algorithm for plume detection and source quantification by satellite point-source imagers
Jack H. Bruno, Dylan Jervis, Daniel J. Varon, and Daniel J. Jacob
Atmos. Meas. Tech., 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024,https://doi.org/10.5194/amt-17-2625-2024, 2024
Short summary
Jack Bruno, Dylan Jervis, Daniel Varon, and Daniel Jacob

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1343', Anonymous Referee #1, 08 Sep 2023
    • AC2: 'Reply on RC1', Jack Bruno, 20 Feb 2024
  • RC2: 'Comment on egusphere-2023-1343', Anonymous Referee #2, 23 Jan 2024
    • AC3: 'Reply on RC2', Jack Bruno, 20 Feb 2024
  • RC3: 'Comment on egusphere-2023-1343', Anonymous Referee #3, 24 Jan 2024
    • AC1: 'Reply on RC3', Jack Bruno, 20 Feb 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1343', Anonymous Referee #1, 08 Sep 2023
    • AC2: 'Reply on RC1', Jack Bruno, 20 Feb 2024
  • RC2: 'Comment on egusphere-2023-1343', Anonymous Referee #2, 23 Jan 2024
    • AC3: 'Reply on RC2', Jack Bruno, 20 Feb 2024
  • RC3: 'Comment on egusphere-2023-1343', Anonymous Referee #3, 24 Jan 2024
    • AC1: 'Reply on RC3', Jack Bruno, 20 Feb 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Jack Bruno on behalf of the Authors (20 Feb 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (26 Feb 2024) by Natalya Kramarova
RR by Anonymous Referee #2 (13 Mar 2024)
RR by Anonymous Referee #3 (14 Mar 2024)
RR by Anonymous Referee #1 (18 Mar 2024)
ED: Publish subject to technical corrections (19 Mar 2024) by Natalya Kramarova
AR by Jack Bruno on behalf of the Authors (19 Mar 2024)  Manuscript 

Journal article(s) based on this preprint

06 May 2024
U-Plume: automated algorithm for plume detection and source quantification by satellite point-source imagers
Jack H. Bruno, Dylan Jervis, Daniel J. Varon, and Daniel J. Jacob
Atmos. Meas. Tech., 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024,https://doi.org/10.5194/amt-17-2625-2024, 2024
Short summary
Jack Bruno, Dylan Jervis, Daniel Varon, and Daniel Jacob
Jack Bruno, Dylan Jervis, Daniel Varon, and Daniel Jacob

Viewed

Total article views: 985 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
663 287 35 985 21 21
  • HTML: 663
  • PDF: 287
  • XML: 35
  • Total: 985
  • BibTeX: 21
  • EndNote: 21
Views and downloads (calculated since 25 Aug 2023)
Cumulative views and downloads (calculated since 25 Aug 2023)

Viewed (geographical distribution)

Total article views: 959 (including HTML, PDF, and XML) Thereof 959 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 30 Aug 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Methane is a potent greenhouse gas and a current high priority target for short/mid term climate change mitigation. Detection of individual methane emitters from space has become possible in recent years, and the volume of data for this task has been rapidly growing and the data volume is outpacing processing capabilities. We introduce an automated approach, U-Plume, which can detect and quantify emissions from individual methane sources in high spatial resolution satellite data.