
1 

 

U-Plume: Automated algorithm for plume detection and source 

quantification by satellite point-source imagers 
 

Jack H. Bruno1,2, Dylan Jervis2, Daniel J. Varon1, Daniel J. Jacob1 

1Earth And Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA 5 
2GHGSat Inc, Montreal, Quebec, H2W1Y5, Canada 

Correspondence to: Jack H. Bruno (jackbruno@g.harvard.edu) 

Abstract. Current methods for detecting atmospheric plumes and inferring point source rates from high-resolution satellite 

imagery are labor intensive and not scalable to the growing satellite dataset available for methane point sources. Here we 

present a two-step algorithm called U-Plume for automated detection and quantification of point sources from satellite imagery. 10 

The first step delivers plume detection and delineation (masking) with a machine learning U-Net architecture for image 

segmentation. The second step quantifies point source rate from the masked plume using wind speed information and either a 

convolution neural network (CNN) or a physics-based Integrated Mass Enhancement (IME) method. The algorithm can 

process 62 128×128 images per second on a single 2.6 GHz Intel Core i7-9750H CPU. We train the algorithm with large-eddy 

simulations of methane plumes superimposed on noisy and variable methane background scenes from the GHGSat-C1 satellite 15 

instrument. We introduce the concept of point source observability Ops = Q/(UWΔB) as a single dimensionless number to 

predict plume detectability and source rate quantification error from an instrument as a function of source rate Q, wind speed 

U, instrument pixel size W, and instrument-dependent background noise ΔB. We show that Ops can powerfully diagnose the 

ability of an imaging instrument to observe point sources of a certain magnitude under given conditions.  U-Plume successfully 

detects and masks plumes from sources as small as 100 kg h-1 in GHGSat-C1 images over surfaces with low background noise 20 

and succeeds for larger point sources over surfaces with substantial background noise. We find that the IME method for source 

quantification is unbiased over the full range of source rates while the CNN method is biased toward the mean of its training 

range. The total error in source rate quantification is dominated by wind speed at low wind speeds and by the masking algorithm 

at high wind speeds. A wind speed of 2-4 m s-1 is optimal for detection and quantification of point sources from satellite data.  

 25 
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1 Introduction 

A number of satellite instruments can now detect and image methane column plumes with spatial resolution finer than 60 m 

by solar backscatter in the shortwave infrared (SWIR), enabling quantification of large point sources from individual facilities 

(Jacob et al., 2022).  As the satellite observing system expands for both methane and other gases, there is a growing need for 30 

efficient methods of detecting and quantifying these point sources by automated processing of vast amounts of data. Here we 
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present the U-Plume algorithm, a generalized machine-learning method to address this need, and we apply it to methane 

observations from GHGSat (Jervis et al., 2021).   

 

Several methods have been proposed for inferring point source rates from satellite imagery of atmospheric pollution plumes, 35 

including for methane (Varon et al. 2018), CO2 (Nassar et al. 2017), NO2 (Valin et al. 2013; De Foy et al. 2015; Beirle et al. 

2021), CO (Pommier et al. 2013), SO2 (Fioletov et al. 2015; McLinden et al. 2016), and NH3 (Clarisse et al. 2019; Dammers 

et al. 2019; Noppen et al. 2023). Gaussian plume inversion (Bovensmann et al., 2010; Krings et al., 2011, 2013) and mass 

balance methods (Jacob et al. 2016; Buchwitz et al., 2017) have both shown success in estimating emissions for very large 

plumes (>10 km) but they fail when applied to sub-km plumes due to stochastic turbulence that leads to non-Gaussian behavior 40 

and dominance of eddy flow (Varon et al., 2018). Temporal averaging of plumes over multiple satellite passes with wind 

rotation has been used extensively for large plumes from well-identified point sources to decrease noise and enhance Gaussian 

behavior (Pommier et al. 2013; Fioletov 2015; McLinden et al. 2016; Varon et al., 2020; Maasakers et al. 2022), but is difficult 

to implement for methane plumes that are typically smaller and intermittent (Frankenberg et al., 2016; Cusworth et al., 2021, 

Irakulis-Loitxate et al., 2021, Ehret et al., 2022, Thorpe et al., 2023).  45 

 

Two methods that have shown success in estimating emissions from high-resolution instantaneous plume imagery are the 

Integrated Mass Enhancement (IME) and Cross-Sectional Flux (CSF) methods (Krings et al. 2011, 2013; Frankenberg et al. 

2016; Varon et al. 2018). The IME method relates the total observed plume mass to a source rate, using information from the 

plume size and the local wind speed. The CSF method integrates concentrations over plume cross-sections perpendicular to 50 

the wind direction and multiplies them by the local wind speed to infer a source rate. Both methods require the plume to be 

identified and masked (i.e., delineated) within the image. 

 

Detection and masking of plumes in satellite scenes has generally been done by human analysts (Guanter et al., 2021) but this 

is not practical operationally. Simple statistical thresholding approaches combined with adjacency criteria have been developed 55 

to detect methane enhancements above background for plume masking (Varon et al., 2019; Duren et al. 2019) but these are 

vulnerable to retrieval artifacts, particularly from surface features mistakenly identified as methane plumes (Cusworth et al., 

2019).  

 

Machine learning is a promising avenue for automating plume detection and inference of point source emissions. 60 

Jongaramrungruang et al. (2022) proposed a Convolutional Neural Network (CNN) to estimate source rates directly from aerial 

AVIRIS-NG methane imagery. Their method (called MethaNet) provides source rate estimates based solely on methane 

column retrieval fields, forgoing the use of external information on wind speed by exploiting wind information contained in 

the morphology of the plumes (Jongaramrungruang et al., 2019). Training and testing of MethaNet has been done on aircraft 

imagery with relatively clean backgrounds and high pixel resolution (3 m), but to our knowledge it has not been applied to 65 



3 

 

satellite imagery which is coarser and more vulnerable to surface artifacts. MethaNet does not produce a plume mask (outline 

of plume boundaries), but such a mask offers important visual information and can help identify artifacts. Joyce et al. (2023) 

used a U-Net architecture to mask methane plumes in PRISMA satellite imagery directly from radiances and again without 

wind speed information. Separate networks were then used for inferring methane column concentration and estimating 

emission rates. In both MethaNet and the Joyce et al. (2023) approach there is a bias towards the training mean in the final 70 

source rate estimates, resulting in overestimate of low emitting plumes and underestimate of high emitting plumes. This is a 

common issue in machine learning applications. 

 

Here we perform binary segmentation of methane column imagery from GHGSat using a U-Net neural network architecture 

to produce plume masks, and we then use these masks together with wind speed information to infer point source rates either 75 

with a CNN or with the physics-based IME method. We use wind speed information because some is always available, either 

from local measurements or from regional/global reanalysis datasets. The U-Net architecture (Ronneberger et al. 2015) has 

previously demonstrated to be effective in feature recognition by binary image segmentation from satellite imagery (Joyce et 

al. 2023), avoiding the false positives present in more traditional methods reliant on thresholding (Rezvanbehbahani et al. 

2020). Combining the U-Net architecture to detect plumes in column enhancement with subsequent steps to infer point source 80 

rates forms an end-to-end algorithm that we call U-Plume. 

2 Methods 

We present here the U-Plume algorithm for identifying point source plumes in satellite imagery of methane concentrations and 

inferring point source rates.  The algorithm has two components: (1) a U-Net to detect plumes by binary segmentation of the 

pixels in the satellite scene (0 = background, 1 = plume), producing a plume mask; (2) two alternative CNN and IME 85 

approaches for inferring source rates from the plume mask. We demonstrate U-Plume on the GHGSat-C1 instrument for 

methane, but the architecture and training process presented here are potentially applicable to any satellite point source imagers 

for any species. 

 

GHGSat-C1 is the first operational instrument launched in 2020 by GHGSat Inc., following the demonstration instrument 90 

GHGSat-D launched in 2016 (Jervis et al., 2021). The instrument is a shortwave IR interferometer with an observation domain 

of ~12×12 km2 at 25×25 m2 pixel resolution. Retrieval of the backscattered solar spectrum at the 1.65 μm methane absorption 

band yields an estimated methane column mass enhancement over background reported as mol m-2 with 1-2% estimated 

precision. The instrument is in polar sun-synchronous orbit with observation at ~9:30 am local time. Subsequently launched 

GHGSat-C2-C11 instruments have less background noise than -C1. Our results can be extended to C2-C11 and any other 95 

instruments using the background noise metrics presented below. 
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Our first step is to create a training data set of plume-containing satellite images in which synthetic instantaneous plumes of 

known source rates are superimposed on actual plume-free images. Following Varon et al. (2018) and Jongaramrungruang et 

al. (2019), we use the Weather Research and Forecasting Model Large Eddy Simulation (WRF-LES) to create a diverse plume 100 

dataset of atmospheric methane concentration enhancements where the relationship between source rate and plume 

concentrations is known. Point source methane emission and atmospheric transport are simulated on a 25×25 m2 horizontal 

and 15-m vertical grid over a 9×9×2.4 km3 domain, with the point-source emitting at the surface 5/6 from the downwind edge 

of the domain. We conduct 4 simulations for different meteorological conditions, each run for 3 hours with the first hour used 

as spin-up, resulting in 2 hours of usable plume images per simulation. Time steps for WRF-LES integration are 1/4 second 105 

and instantaneous plumes are sampled every 30 seconds. Mean wind speeds for the simulations are 3-9 m s-1 with sensible heat 

fluxes of 100-300 W m-2 and mixed layer depths of 500-2000 m. This is the same ensemble as used by Varon et al (2021) 

where the specific details of the simulations are provided.  

 

To create an effective neural network, the training imagery must be as close as possible to the real observations that the model 110 

will be applied to. Previous work by Varon et al. (2018) using WRF-LES to simulate synthetic plumes superimposed these 

plumes on a white-noise background to generate a training data set, but variable surface albedo and terrain can lead to 

heterogenous noise fields with complex structure. To create realistic noise for our training images we start from a set of actual 

GHGSat-C1 observations of plume-free scenes and add the methane column enhancements from the WRF-LES simulation. 

We use the standard deviation of the pixel enhancements in the plume-free scene (𝐵, kg  m−2) as measure of background 115 

noise: 

 

 𝐵 =   √
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛
 (1) 

 

Here n is the number of pixels in the image, xi is the column concentration for individual pixel i, and 𝑥̅ is the mean column 120 

concentration in the scene. When discussing 𝐵 we express it as a percentage of the global mean background concentrations 

(taken as xb = 0.011 kg m-2; Jervis et al., 2021). We use 28 12×12 km2 GHGSat-C1 plume-free observations corresponding to 

a variety of surface types. Scenes with 𝐵 < 5% correspond to homogenous bright surfaces including arid and grassland 

terrain. Scenes with 5% < 𝐵 < 10% correspond to moderately heterogeneous surfaces. Scenes with 𝐵 > 10% correspond 

to very heterogeneous or dark surfaces including forests, wetlands, and urban areas. Values of ΔB are instrument dependent.  125 

The more recent GHGSat-C2 and beyond instruments have 𝐵 < 2% across most observing conditions (Ramier, 2022). On 

the other hand, hyper/multi-spectral land surface mappers can have background noise exceeding 10% (Cusworth et al., 2019; 

Varon et al., 2021).  
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 130 

Figure 1: Sample generation of U-Plume training imagery. The first panel shows a sample plume-free observation of methane column 

concentration enhancements observed by GHGSat-C1. Panel 2 is a 128×128-pixel scene randomly selected from the full observation 

domain. Panel 3 shows a sample WRF-LES instantaneous plume for a source rate of 2000 kg h-1 (we choose a large plume here for 

easy visualization). Panel 4 shows the result of adding panels 2 and 3 to form a training image. 0.1 mol m-2 corresponds to a dry 

column mixing ratio enhancement of 284 ppb. 135 

 

Fig 1 illustrates the steps for creating the synthetic plume observations used in training and testing our method. For each 

training image, a 128×128-pixel scene is randomly selected from a plume-free GHGSat-C1 observation. A random plume 

from the WRF-LES dataset is then selected, with a random rotation and translation applied to situate the plume anywhere in 

the scene but with a safeguard to ensure that the plume is fully contained in the scene. Since the methane enhancement in the 140 

plume is proportional to source rate, we can scale the plume randomly to correspond to a given source rate. This plume image 

is then added to the selected scene to create a training image. A training range of plumes emitting in the 500-2000 kg h-1 is 

chosen to ensure that the plumes are at least partially visible in most training images. Though we want the network to be able 

to detect smaller source rates, it is important that the structural features being searched for are visible above noise within the 

training dataset. Because the U-Net recognizes structure, not just enhancement, the network trained on the 500-2000 kg h-1 145 

range is still usable outside of this range as we will see. Because pixel values for methane enhancement generally fall in the -

0.3-0.3 mol m-2 range we found that it is not necessary to normalize the data for training. 

 

Our set of training/test images is created using 28 plume-free observations. We step the 128×128-pixel scene in 16-pixel steps 

to create a set of scenes. The 𝐵 values of these scenes range from 1% to more than 50%. We only use scenes with 𝐵 < 20% 150 

to avoid training on scenes with extremely high background variability where detection of any but the largest plumes would 

be intractable. This filtering leaves us with a total of 6870 scenes with a median  𝐵 of 8% and interquartiles of 5% and 

12%. We then apply the random plume placement and source magnitude as described above to create 6870 simulated plume 

observations. This is a relatively small set for training by machine learning standards, but it is sufficient to provide a successful 
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network which could be easily bolstered with a future collection of additional LES simulations and background images. The 155 

true plume mask is defined as pixels where the enhancement from the LES simulation is higher than the 𝐵 of the scene, which 

is the criterion for the pixel contributing more information than noise (Varon et al., 2018). 90% of the images are used for 

training and 10% are set aside for testing. We use a relatively standard configuration of the U-Net model with a modest training 

period and therefore do not separate a validation set for specific learning rate stopping criteria. The metric we use for masking 

success is the Jaccard score, which is the intersection of the predicted mask (A) and true mask (B) over the unity of the two: 160 

𝐽(𝐴, 𝐵) =  
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
(2) 

We train the model for 20 epochs with a batch size of 32 images minimizing a loss function (L) combining binary cross-entropy 

(BCE, Jardon 2020) and the Jaccard score defined as: 

 

𝐿 = − ln(𝐽(𝐴, 𝐵)) + BCE (3)  165 

 

Fig. 2 shows the two-step process used to obtain source rate estimates from methane enhancement images. First, a U-Net 

masking network is used to identify pixels in which a plume is present. The binary mask created by this network is then fed 

along with the original enhancement image and external wind speed data to estimate the source rate from the identified plume. 

The enhancement image with mask is preserved for visualization and as a quality control diagnostic. Processing the test dataset 170 

of 687 images, preloaded from their relevant files, in 32 image batches on a single 2.6 GHz Intel Core i7-9750H CPU takes 

11 seconds, corresponding to 62 images per second. 

 

 

 175 

Figure 2: U-Plume architecture. Starting from a methane enhancement image (the sample image of fig.1), we use the U-Net machine 

learning algorithm to produce a plume mask (in red) of pixels containing more information than noise. All masked pixels in a single 

128×128-pixel (3.2×3.2 km2) scene are assumed to originate from the same plume. We then use the original enhancement image, the 

mask, and local 10-m wind speed to quantify emissions using either a machine learning method or an Integrated Methane 

Enhancement (IME) method.  180 
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The U-Net neural network for plume masking (Ronneberger et al. 2015) uses an encoder-decoder framework to recognize 

structural features within imagery. The network receives a methane enhancement image as in Fig. 2 and classifies each pixel 

with a confidence level for the presence of a plume. We apply a threshold of 50% confidence to produce a binary plume mask. 

The main advantage of this method over traditional threshold masking is that high enhancement features that do not have 185 

plumelike shape characteristics will not be falsely captured as plumes.  

 

The encoder portion of the network applies a series of convolutional filters and pooling layers to identify features of increasing 

complexity within the image. At the end of the encoding the image has been compressed spatially and has many channels 

corresponding to the various feature maps created by the convolutional filtering. By compressing the image spatially in this 190 

way, the network can recognize connections between distant features. 

 

The decoder portion of the network serves to interpret these identified features as criteria for classification. An inverse 

convolutional operator is used to expand the spatially compressed image back to the original size of the input image while 

reducing the number of filters applied, which compresses the number of channels in the image. The final step of the network 195 

uses the information gathered from the encoder-decoder process to estimate a confidence level (0-1) that each pixel is or is not 

part of a plume. Output from this model for a single image is a confidence mask for plume location across the enhancement 

image as shown in Figure 2. In practice, the confidence mask is generally either very close to 1 or very close to 0. Intermediate 

values fall off very quickly at the edge of the mask. We differ from the Ronneberger et al. structure only in that we begin with 

16 convolutional filters rather than 64 and thus reach a maximum channel depth of 256 rather than 1024 at the end of the 200 

encoder path. A loss function combining binary cross entropy and Jaccard score is minimized for the training set. The code 

used for the model creation and loss function can be found alongside our dataset in the repository at the end of this text 

(https://doi.org/10.7910/DVN/YFRQU4) 

 

Once the U-Net mask has been generated as the first step of our U-Plume algorithm, we infer the source rate as a second step 205 

using as options either a CNN method or an IME method. The CNN method takes in a 3-channel input image containing the 

original image, the binary mask, and 10-m wind speed. Initial testing indicated that including wind direction did not improve 

performance. The wind speed channel is populated with a uniform 15-minute scene average value from the LES simulation. 

The CNN uses a series of convolutional and pooling layers which connect to a set of fully connected layers, rather than a 

decoder, to yield a scalar estimate of emissions. The CNN structure is identical to that of the U-Net truncated at the end of the 210 

encoder path and connected to 32 and then 16 node dense layers with a single node output layer. All 3 of the added layers use 

a relu activation function and the model is trained using a mean squared error loss. We train the model for 10 epochs with a 

batch size of 32 images and use U-Net generated masks for the mask input channel (limited to successfully masked examples). 

Optimization of this structure and training process could potentially improve the results of the CNN. 

https://doi.org/10.7910/DVN/YFRQU4


8 

 

 215 

The IME method follows Varon et al. (2018), in which the plume mass enhancement (IME) is combined with a parameterized 

effective wind speed (Ueff) and plume length scale (L) to infer the source rate (Q, kg h-1):  

 

𝑄 = IME
𝑈𝑒𝑓𝑓

𝐿
(4) 

 220 

The plume length scale L is defined as the square root of the plume mask area. The effective wind speed is fitted to the 15-

minute averaged wind speed U10 at 10-m altitude using the training data set where the relationship between Q, IME, and L is 

known for a given U10. This yields  

 

𝑈𝑒𝑓𝑓 = 0.7 + 0.23 𝑈10 (5) 225 

 

with Ueff and U10 in units of m s-1. The intercept of 0.7 m s-1 arising from the fit can be physically interpreted as a minimum 

turbulent diffusion for the plume at low wind speeds. This calibration is specific to the GHGSat-C1 instrument and should be 

recalculated when applying U-Plume to other platforms. 

3 Dimensionless Point Source Observability Number 230 

We introduce the concept of point source observability (Ops) as a dimensionless number to determine the ability of a satellite 

instrument to detect and quantify point sources.  Observability is a function of source rate (Q, kg s-1), wind speed (U, m s-1), 

instrument pixel resolution (W, m) which is 25 m for our case, and scene-dependent background noise (ΔB, kg m-2, as defined 

by equation (1)).  

 235 

The idea behind the Ops concept is that the observability of point sources is determined by the signal-to-noise ratio in the plume 

(Varon et al., 2018). The column concentration enhancement in the plume (kg m-2) scales as Q/UW (Jacob et al., 2016). The 

noise for a given scene (kg m-2) is given by ΔB which is a scene-dependent property of the instrument that can be characterized 

as a function of surface type. ΔB can be viewed as the precision of the instrument accounting for the contribution from surface 

artifacts. The dimensionless point source observability number Ops is then given by 240 

 

𝑂𝑝𝑠 =
𝑄

𝑈𝑊𝐵
(6) 

 

and is a measure of the signal-to-noise ratio. We will use it here to interpret our results, but it can be applied more generally 

to any remote sensing observation of point sources. 245 
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4 Results 

4.1 Plume Detection and Masking 

 250 

Fig. 3 shows the relationship between source rate and U-Net masking success. In 2% of cases no mask is produced for the 

image, and in 30% of cases there is no overlap between the true and predicted masks. These failures occur for high background 

noise (ΔB > 5%) and lower emission rates. On the other hand, Jaccard scores generally exceed 0.5 for low background noise 

(ΔB < 5%).  

 255 

 

    
 

 

Figure 3: Ability of the U-Net machine learning algorithm to delineate (mask) plumes emitted from point sources. Masking 

success is measured by the Jaccard score (equation (2)) and is plotted as a function of background noise 𝑩 (equation (1)) 

for a range of point source rates from 500 to 2000 kg h-1. Results are for the test set of WRF-LES plume images 

superimposed on noisy plume free observations from the GHG-Sat C1 satellite instrument.  
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We examine false positives by applying the network over the test dataset of backgrounds without plumes added. This yields 260 

masks in 14% of cases (false positive detection rate). The masks produced in these false positives are generally very small, 

with a median size of 5 pixels. Applying a minimum 5-pixel mask size brings the false positive rate down to 6% while losing 

only 1.6% of the true positive detections in the test data set and removing 92% of the zero overlap masks. False positives occur 

most comonly in scenes with high 𝐵 values and particularly in scenes with complex topography. The mask sizes for these 

false positives are generally small, as is apparent in the mask size filtering effectiveness, and their corresponding estimated 265 

source rates are therefore also generally small. 

 

 

 
 270 
Figure 4: Probability of detection (J > 0.1) for point sources in the GHGSat-C1 augmented test data set as a function of the point 

source observability dimensionless number Ops (equation (6)). Calculation of Ops uses the WRF-LES 10-m wind speed for U and the 

GHGSat-C1 pixel size W = 25 m.  

The point source observability (Ops) in equation (6) provides a scaling dimensionless number to better understand how point 

source detection for a given instrument relates to the combination of source rate, background noise, wind speed, and pixel size.  275 
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Here we use the 10-m wind speed (U10) in the calculation of Ops. We create an augmented test dataset with 10 subset images 

from each of the 28 plume-free observations (Figure 1) and 20 emission levels for each image from 100 to 2000 kg h-1 in 100 

kg h-1 increments. We bin images in the augmented test dataset by their Ops ranging from 0.005 to 0.5 in 201 log-spaced bins, 

and for each bin with a minimum of 50 images we calculate the probability of detection as the fraction of plumes in the bin 

with J > 0.1. Figure 4 shows the relationship between the probability P of detection and Ops. The relationship for Ops > 0.014 280 

can be tightly fit to a sigmoid function of the form: 

 

𝑃 =  
1.03

1 + 𝑒−2.9(𝑙𝑜𝑔(𝑂𝑝𝑠)+3.3)
− 0.05         (𝑂𝑝𝑠   >  0.014) (7) 

 

 285 

Detection probability is 10% for Ops = 0.02, 50% for Ops = 0.04, and 90% for Ops = 0.08. The transition from low detectability 

(<10%) to high detectability (>90%) is very sharp in Ops space, demonstrating the power of the Ops metric for evaluating the 

ability of plume imaging instrument to observe point sources.  The value Ops = 0.04 for the 50% detection threshold can be 

interrpreted as a characteristic column-averaged concentration enhancement 0.04Q/UW in the plume. The maximum column-

averaged concentration enhancement in the source pixel would be Q/UW (Jacob et al., 2016).    290 
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Figure 5: Probability of detection (J  > 0.1) for point sources calculated using equation (2) as a function of background noise (equation 295 
(1)), source rate (top panel), and 10-m wind speed (bottom panel).   
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Fig. 5 shows the probability of detection calculated using equation (7) as a function of source rate, 10-m wind speed, and 

background noise. For low values of 𝐵, the probability of detection is very sensitive to changes in Q and less sensitive to 

changes in U10. With ΔB = 1%, 𝑈 = 5 m/s, and 𝑊 = 25 m, 90% probability of detection is achieved for Q > 400 kg h-1.  

4.2 Source Rate Estimation 300 

 

 

Figure 6: Source rate estimates from the alternative CNN and IME methods (Figure 2) for point sources emitting in 

the 100-2000 kg h-1 range (discrete 100 kg h-1 bins) in the augmented test dataset. The methods were trained with source 
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rates in the 500-2000 kg h-1 range. Only images with Jaccard scores > 0.1 are processed. Error bars show 1 standard 305 

deviation of estimates. 

 

Fig. 6 shows the source rate estimates for the complete U-Plume workflow, starting from the plume imagery and applying 

either the CNN or the IME method for source rate quantification. We restrict our analysis to plumes with Jaccard score >0.1 

to enable generalization to instruments with less background noise than GHGSat-C1 (such as GHGSat-C2) or to the use of 310 

improved filtering such as requiring a minimum number of plume pixels. Results are for the augmented dataset covering the 

100-2000 kg h-1 range but trained only over the 500-2000 kg h-1 range. We assume for now no error on wind speed.  

 

The CNN method has a smoothing bias where low source rates are overestimated, and high source rates are underestimated. 

This smoothing towards the mean is a common issue in machine learning methods and appears in the work of 315 

Jongaramrungruang et al. (2022) and Joyce et al. (2023). In addition, the CNN method is unable to extrapolate outside its 

training range. By contrast, the physically based IME method can successfully fit source rates all the way down to 100 kg h-1 

as long as the plumes are detectable. Discussion from this point forward will focus on the IME method as performing better 

than the CNN method over the full range of source rates. We retain the CNN method as an option in the U-Plume algorithm 

because it offers an alternative source rate estimate for verification purposes and because it could be improved in the future 320 

with a more extensive training dataset. A potential avenue for future work would be the testing of other CNN architectures and 

the expansion of training data to include the range of all possible source rates. 

 

4.3 Error Analysis 

The uncertainty on source rate estimates using U-Plume with the IME method can be expressed as the relative error standard 325 

deviation (σ𝑄) of the U-Plume estimate versus the true value. It has two independent components: (1) error in the U-Plume 

algorithm, including the masking process and the IME parameterization (σ𝑄,𝑀); and (2) error in the 10-m wind speed (σ𝑄,𝑈). 

Here we derive expressions for σ𝑄,𝑀 and σ𝑄,𝑈 and add them in quadrature to quantify the overall error and determine the 

driving factors.  

 330 

The relative error standard deviation σ𝑄,𝑀 from the U-Plume algorithm can be parameterized using the augmented test data set 

binned by point source observability Ops following the approach in section 4.2 using only bins with >50 positive detections (J 

> 0.1). Figure 7 shows the relative error standard deviation plotted against Ops.  
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 335 
Figure 7:  Relative error on source rate estimation by the U-Plume algorithm. The figure shows the relative error standard deviation 

𝛔𝐐,𝐌 versus the point source observability dimensionless number Ops (equation (6)). Errors are calculated for point sources emitting 

in the 100-2000 kg h-1 range (discrete 100 kg h-1 bins) in the augmented test dataset, not including error in wind speed (for which the 

error is calculated separately, see text). Errors from individual images are binned by values of their point source observability 

(equation (6)) for Ops = 0.005-0.5 in 201 log-spaced intervals. The orange line is a reduced-major-axis (RMA) regression fit (R2 = 340 
0.89) for 𝛔𝐐,𝐌 versus Ops (equation (8)). 

Fitting the error to log (Ops) yields: 

 

σ𝑄,𝑀 = max(0.1, (0.018 − 0.098 log(𝑂𝑝𝑠))   (0.03 < 𝑂𝑝𝑠 < 0.3) (8) 
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 345 

 

For values of Op s< 0.02 the probability of detection is less than 10% (section 4.1).  The relative error standard deviation 

bottoms out at 10% for highly observable plumes (Ops > 0.3), reflecting irreducible error inherent to the IME method. 

 

Uncertainty in wind speed adds another source of error.  Let σ𝑈  (m s-1) denote the error standard deviation in the 10-m wind 350 

speed U10. Replacing in equations (4) and (5) yields a corresponding relative error standard deviation σ𝑄,𝑈  on the inferred IME 

source rate Q: 

  

σ𝑄,𝑈 =
0.23 σ𝑈

0.7 + 0.23 𝑈10

(9) 

 355 

Wind speed data may be available locally or from meteorological analysis datasets. A global default is the NASA Goddard 

Earth Observation System – Fast Processing (GEOS-FP) data publicly available on a 0.25 × 0.3125 grid at 1-h temporal 

resolution.  Varon et al. (2018) estimated an error standard deviation σ𝑈 = 2 m s-1 for the GEOS-FP data, independent of wind 

speed magnitude, by comparison to 5-minute observations at US airports.  Replacing into equation (8) indicates a maximum 

relative error standard deviation of 66% at low wind speed, decreasing with increasing wind speed. At high wind speeds the 360 

error becomes small but the IME is then small so that the masking error is large as inferred from the inverse dependence of the 

point source observability on wind speed (equation (6) and Figure 7).  

 

 

 365 
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Figure 8: Total relative error standard deviation σQ on point source rate estimates from the U-Plume algorithm with the IME method 

(equation (9)) as a function of three variables: background noise ΔB (%), source rate Q (kg h-1), and 10-m wind speed U10 (m s-1). 

The dashed orange line represents the probability of point source detection calculated with equation (6). 

 370 

Adding the error variances from equations (8) and (9) in quadrature gives the total relative error variance σ𝑄
2 on the estimated 

sources rates from the U-Plume algorithm including error on wind speed: 

 

σ𝑄
2 = (max(0.1, (0.018 − 0.098 log(𝑂𝑝𝑠)))2+ (

0.23 𝜎𝑈

0.7 + 0.23 𝑈10
)

2

          (0.03 < 𝑂𝑝𝑠 < 0.3) (10) 

 375 

 

Fig. 8 shows the total relative error standard deviation σ𝑄 as a function of background noise ΔB, source rate Q, and 10-m wind 

speed, U10. computed from equation (10) for common observing conditions. E quation 10 can be used to calculate the values 

at any desired combination within the limits of the composing equations. The total relative error standard deviation increases 

linearly with log (𝐵),  decreases linearly with log (Q), and is minimum for U10 = 4 m s-1. 380 
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Figure 9: Dependence of errors in point source estimates on wind speed. The Figure shows the relative error standard deviation on 

the source rate estimates inferred from U-Plume with the IME method (equation (10)) as a function of 10-m wind speed (U10). The 

total relative error standard deviation σQ is shown as the red line (same as Figure 8) and is decomposed into the contributions from 385 
errors in the U-Plume algorithm (σQ,M  equation (8)) and errors in wind speed (σU equation (9)).  

 

The dependence of the total relative error standard deviation on wind speed is partitioned further in Figure 9 into the 

contributions from the U-Plume algorithm and wind speed errors.  The error contribution from the U-Plume algorithm increases 
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with rising wind speed, because methane enhancements in the plume become smaller, but this levels off at high wind speeds 390 

as the plumes are increasingly likely to be undetected instead. The error contribution from wind speed decreases with rising 

wind speed. The total error is dominated by wind speed for U10 < 4 m s-1 and by the U-Plume algorithm for U10 > 4 m s-1. For 

the range of values of ΔB and Q in our dataset we find that the cross-over between the two regimes is at 2-4 m s-1, which can 

be regarded as an optimum wind speed range for plume quantification.   

5 Conclusions 395 

We developed the U-Plume algorithm for automated detection and quantification of point source rates from high-resolution 

satellite imagery of atmospheric column concentrations. Our work was motivated by the need for fast identification of plumes 

in the operational processing of the vast amounts of methane data from the rapidly expanding constellation of GHGSat and 

other satellite instruments targeting methane point sources. With instrument-specific training, the method can also be applied 

to any chemically inert plume such as for CO2 , due to the inherent similarity in the physics governing plume formation and 400 

transport.  

 

U-Plume involves two steps. The first step is a machine learning U-Net architecture for plume detection and delineation 

(masking) in noisy satellite images. The resulting plume mask is then used together with wind speed information in a second 

step of source rate quantification using either a convolutional neural network (CNN) or a physically based Integrated Mass 405 

Enhancement (IME) method. Having plume mask as well as source rate information available from U-Plume output is 

important for visualization, quality control, and pinpointing the source location. The end-to-end algorithm can process 62 

images per second on a single core. 

 

We trained U-Plume with an ensemble of plume free observation images from the GHG-Sat C1 satellite instrument covering 410 

a range of surfaces from homogeneous to highly heterogeneous and superimposing instantaneous methane plumes from large-

eddy simulations with known point source rates. Evaluation with data unseen by the model during the training process shows 

that successful plume detection and masking is strongly dependent on four state variables: instrument background noise ΔB, 

source rate Q, 10-m wind speed U10, and pixel resolution W. We combine these variables into a new dimensionless number 

metric, the point source observability Ops = Q/(WU10ΔB), and show that this metric can successfully predict the ability of a the 415 

GHGSat-C1 imager to detect the plumes and quantify source rates for given observing conditions. As it is dependent on the 

fundamental state variables of the enhancement produced by a methane point source, we expect that the point source 

observability will be a valuable metric for evaluating detectability and quantification accuracy of other point source imagers 

after appropriate tuning. For example, it can assist in determining when automation is possible for a given target detection 

level. For the GHGSat-C2 instruments with background noise ΔB < 1%, we thus expect that U-Plume should reliably detect 420 

and quantify point sources with Q > 400 kg h-1 at 𝑈 = 5 𝑚/𝑠 wind speeds. For reference, GHGSat’s manual plume detection 

method has achieved a 50% probability of detection in 3 m/s at 117 kg/hr in a self-administered controlled release campaign 
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(https://go.ghgsat.com/validation-and-metrics-for-emissions-detection-by-satellite) and detected the only <200 kg/hr emission 

in a 3rd-party organized single-blind campaign (https://www.nature.com/articles/s41598-023-30761-2). U-Plume’s value 

comes in the ability to process large sets of plume data rather than pushing the limits of detectability. Human operators with 425 

knowledge of point source location would be expected to have greater ability to detect small sources (Sherwin et al., 2022). 

 

We find that the physically based IME method is superior to the CNN method for inferring point source rates from the plume 

masks. The CNN has high bias for low source rates, and low bias for high source rates, as is typical for machine learning 

methods. The superiority of the IME method would be expected considering that there is a simple physically-based linear 430 

relationship between plume mass and source rate modulated by wind speed. Although a CNN method may not require 

information on wind speed, such information is always available either from local measurements or from regional/global 

databases. 

 

We developed an end-to-end error model for the point source rates inferred from U-Plume as a function of Ops. We find that 435 

at low wind speeds the error is dominated by wind speed whereas at higher wind speeds the error is dominated by the U-Plume 

algorithm. The U10 value where this shift occurs is typically 2-4 m s-1. This also represents an optimal wind speed range for 

plume detection and quantification. 

 

U-Plume thus offers a capable tool for fast automated processing of vast amounts of satellite imagery to detect plumes from 440 

point sources and quantify point source rates. As the ability of satellite observations to decrease background noise continues 

to improve, the U-Plume capability to detect and quantify points sources will correspondingly increase.   
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