Preprints
https://doi.org/10.5194/egusphere-2023-1337
https://doi.org/10.5194/egusphere-2023-1337
08 Aug 2023
 | 08 Aug 2023

Observations and modeling of areal surface albedo and surface types in the Arctic

Evelyn Jäkel, Sebastian Becker, Tim R. Sperzel, Hannah Niehaus, Gunnar Spreen, Ran Tao, Marcel Nicolaus, Wolfgang Dorn, Annette Rinke, Jörg Brauchle, and Manfred Wendisch

Abstract. An accurate representation of the annual evolution of surface albedo, especially during the melting period, is crucial to obtain reliable climate model predictions. Therefore, the output of the surface albedo scheme of the coupled regional climate model HIRHAM–NAOSIM was evaluated against airborne and ground-based measurements. The observations were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in 2020 and during five aircraft campaigns in the European Arctic at different seasons between 2017 and 2022. We applied two approaches to the comparison, one relying on measured input parameters of surface type fraction and surface skin temperature (offline evaluation), the other using HIRHAM-NAOSIM simulations independently of our observational data (online evaluation). From the offline evaluation we found a seasonal-dependent bias between measured and modeled surface albedo for cloudless and cloudy situations. In spring, the cloud effect on surface broadband albedo was overestimated by the surface albedo parametrization (mean albedo bias of 0.06), while the surface albedo scheme for cloudless cases reproduced the measured surface albedo distributions for all seasons. The online evaluation showed that the overestimation of the modeled surface albedo may result from the overestimation of the modeled cloud cover. It was further shown that the surface type parametrization contributes significantly to the bias in albedo, especially in summer (drainage of melt ponds) and autumn (onset of refreezing). The difference of modeled and measured net irradiance for selected flights during the five flight campaigns was derived to estimate the impact of the model bias for the solar radiative energy budget. We revealed a negative bias between modeled and measured net irradiance (bias median: -6.4 W m−2) for optically thin clouds, while the median value of only 0.1 W m−2 was determined for optically thicker clouds.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

12 Mar 2024
Observations and modeling of areal surface albedo and surface types in the Arctic
Evelyn Jäkel, Sebastian Becker, Tim R. Sperzel, Hannah Niehaus, Gunnar Spreen, Ran Tao, Marcel Nicolaus, Wolfgang Dorn, Annette Rinke, Jörg Brauchle, and Manfred Wendisch
The Cryosphere, 18, 1185–1205, https://doi.org/10.5194/tc-18-1185-2024,https://doi.org/10.5194/tc-18-1185-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The results of the surface albedo scheme of a coupled regional climate model were evaluated...
Share