Preprints
https://doi.org/10.5194/egusphere-2023-116
https://doi.org/10.5194/egusphere-2023-116
08 Feb 2023
 | 08 Feb 2023

Leveraging Google’s Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond

Ian Madden, Simone Marras, and Jenny Suckale

Abstract. Tsunami-risk and flood-risk mitigation planning has particular importance for communities like those of the Pacific Northwest, where coastlines are extremely dynamic and a seismically-active subduction zone looms large. The challenge does not stop here for risk managers: mitigation options have multiplied since communities have realized the viability and benefits of nature-based solutions. To identify suitable mitigation options for their community, risk managers need the ability to rapidly evaluate several different options through fast and accessible tsunami models, but may lack high-performance computing infrastructure. The goal of this work is to leverage the newly developed Google's Tensor Processing Unit (TPU), a high-performance hardware accessible via the Google Cloud framework, to enable the rapid evaluation of different tsunami-risk mitigation strategies available to all communities. We establish a starting point through a numerical solver of the nonlinear shallow-water equations that uses a fifth-order Weighted Essentially Non-Oscillatory method with the Lax-Friedrichs flux splitting, and a Total Variation Diminishing third-order Runge-Kutta method for time discretization. We verify numerical solutions through several analytical solutions and benchmarks, reproduce several findings about one particular tsunami-risk mitigation strategy, and model tsunami runup at Crescent City, California whose topography comes from a high-resolution Digital Elevation Model. The direct measurements of the simulations performance, energy usage, and ease of execution show that our code could be a first step towards a community-based, user-friendly virtual laboratory that can be run by a minimally trained user on the cloud thanks to the ease of use of the Google Cloud Platform.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

27 Jun 2023
Leveraging Google's Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023,https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary
Ian Madden, Simone Marras, and Jenny Suckale

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-116', Ilhan Özgen-Xian, 27 Feb 2023
    • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023
  • RC2: 'Comment on egusphere-2023-116', Anonymous Referee #2, 28 Mar 2023
    • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023
  • RC3: 'Comment on egusphere-2023-116', Anonymous Referee #3, 13 Apr 2023
    • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023
  • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-116', Ilhan Özgen-Xian, 27 Feb 2023
    • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023
  • RC2: 'Comment on egusphere-2023-116', Anonymous Referee #2, 28 Mar 2023
    • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023
  • RC3: 'Comment on egusphere-2023-116', Anonymous Referee #3, 13 Apr 2023
    • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023
  • AC1: 'Comment on egusphere-2023-116', Ian Madden, 05 May 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Ian Madden on behalf of the Authors (05 May 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (12 May 2023) by Deepak Subramani
AR by Ian Madden on behalf of the Authors (12 May 2023)

Journal article(s) based on this preprint

27 Jun 2023
Leveraging Google's Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023,https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary
Ian Madden, Simone Marras, and Jenny Suckale

Model code and software

tsunamiTPUlab Ian Madden, Simone Marras, and Jenny Suckale https://github.com/smarras79/tsunamiTPUlab/releases/tag/v1.0.0

Ian Madden, Simone Marras, and Jenny Suckale

Viewed

Total article views: 466 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
339 111 16 466 6 4
  • HTML: 339
  • PDF: 111
  • XML: 16
  • Total: 466
  • BibTeX: 6
  • EndNote: 4
Views and downloads (calculated since 08 Feb 2023)
Cumulative views and downloads (calculated since 08 Feb 2023)

Viewed (geographical distribution)

Total article views: 442 (including HTML, PDF, and XML) Thereof 442 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
To aid risk managers who may wish to rapidly assess tsunami-risk but may lack high-performance computing infrastructure, we provide an accessible software package able to rapidly model tsunami inundation over real topography by leveraging Google's Tensor Processing Unit, a high-performance hardware. Minimally trained users can take advantage of the rapid modeling abilities provided by this package via a web browser thanks to the ease of use of Google Cloud Platform.