Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Manuscript Resubmission

Journal: Geoscientific Model Development
Manuscript #: EGUSPHERE-2023-116

Manuscript Title: Leveraging Google’s Tensor Processing Units for tsunami-risk mit-

igation planning in the Pacific Northwest and beyond
Authors: Ian Madden, Simone Marras, Jenny Suckale
Date: May 5, 2023

Dear Dr. Deepak Subramani,

Thank you for your time overseeing the review process and for selecting reviewers that have provided
insightful suggestions to improve our manuscript. It is our pleasure to resubmit our manuscript
EGUSPHERE-2023-116, entitled “Leveraging Google’s Tensor Processing Units for tsunami-risk
mitigation planning in the Pacific Northwest and beyond” by Madden et al. for continued evaluation
at Geoscientific Model Development.

In response to the comments of the reviewers, we have made the following major changes to the
manuscript:

1.

We have included an additional figure in section 2.5 demonstrating how a risk manager could
use our TPU code as it currently stands.

We have added reworked the table with respect to scaling based on number of TPUv2 cores
in Section 3.1.

. Our figures and tables in Section 3.2 have been updated following a mistake in calculating

error norms. We have also included an additional section to the Appendix detailing some
further analysis of error norms in the problems for Section 2.1-2.3.

. The solver conditions used in the GeoClaw software package are concretely outlined, with a

grid convergence plot for the real-world scenario, in Section 3.3.

. We have completely reworked Section 3.4 on Energy Utilization.

. We have removed some excess summary sentences from the Discussion and added a Conclusion

section.

According to the policy for resubmitting manuscripts, we have responded to all reviewer com-
ments in detail in the below response letters.

Sincerely,

Tan Madden

Institute for Computational and Mathematical Engineering,
Stanford University, Stanford, California, USA

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Response to Reviewer #1

R1.1. In the equations 1-3, the non-linear advection term from page 4 seems to be contained in the
term 0.5 (h2 - b2)? It would help the reader to point out this term in these equations.

Thank you for pointing out this shortcoming to our explanation. We have added a brief sentence
to remind the reader about the addition of the nonlinear advection term in our implementation
of the shallow water equations on lines 118-120.

Sh+ & (hu) + £ (hw) =0 (1)
)

QJ‘@

hu)? n2+/ (hu)2+(hv)?2
(h) + 2 (U2 + 3902 = 17)) + & (huw) = —g(h+) — TGO () (2)

QJ‘Q

- .)2 - n2 hw)2+(hv)2
() + 2 (huw) + & (G5 + Tg(n? = 82)) = —g(h+) § — "D (), (3)

where ¢ = 9.81 ms™2 is the acceleration of gravity, and n is the Manning friction coefficient.
Note that the left-hand-side of our formulation of the shallow water equations includes the full
nonlinear advection terms.

R1.2. Can the authors comment further on the trade-offs of using a high-order scheme with an
arguably large stencil with regard to parallel performance, numerical accuracy, and memory? This
could be added to the discussion on page 22.

Thank you for the suggestion to discuss the trade-offs of using a higher-order scheme. We added
a brief explanation for the choice of numerical scheme at the end of the discussion as suggested.
We do acknowledge that using a large stencil could result in reduced parallel performance; this
aspect could be improved upon in the future. Here, we aim to establish an easy-to-use software
package that is capable of providing a reasonable result and maintain high accuracy for the
complex topographies that risk managers often deal with.

This paper aims to be a first step towards a community based infrastructure that will allow local
authorities around the world to readily execute tsunami simulations for risk mitigation planning.
We aim to provide a proof-of-concept rather than a complete implementation. As such, we used
a very similar base framework used by Hu et al. (2022) of halo exchange in combination with a
WENO (Liu et al. 1994, Jiang & Shu 1996) and Runge-Kutta scheme (Shu 1988). We choose
easily implementable higher order schemes to maintain high accuracy, necessary for simulating
tsunami inundation over the complex topographies that risk managers often deal with in the
real-world, despite the fact that the large stencils within the current implementation may not be
optimal for TPU performance. Future work could consider a convolution-based implementation
of the quadrature of the shallow water equations to test for maximum performance utilization
of the TPUs.

R1.3: Can the authors give a bit more detail on the numerical treatment at shocks and at wet/dry
fronts?

For this study we assume a thin-film of water at all ’dry’ points of the map. Some articles that
use this approach

e P.D. Bates, J.-M. Hervouet, A new method for moving-boundary hydrodynamic problems
in shallow water Proc. R. Soc. London, Ser. A: Math. Phys. Engrg. Sci., 455 (1999), pp.
3107-3128

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

e S. Bunya, E.J. Kubatko, J.J. Westerink, C. Dawson A wetting and drying treatment for
the Runge-Kutta discontinuous Galerkin solution to the shallow water equations Comput.
Methods Appl. Mech. Engrg., 198 (2009), pp. 1548-1562

e O. Gourgue, R. Comblen, J. Lambrechts, T. Karné, V. Legat, E. Deleersnijder, A flux-
limiting wetting—drying method for finite-element shallow-water models, with application
to the Scheldt Estuary, Adv. Water Resour., 32 (2009), pp. 1726-1739

e I. Nikolos, A. Delis, An unstructured node-centered finite volume scheme for shallow water
flows with wet/dry fronts over complex topography, Comput. Methods Appl. Mech.
Engrg., 198 (2009), pp. 3723-3750

listed by Karna Et al. (2011) ”A fully implicit wetting—drying method for DG-FEM shallow
water models, with an application to the Scheldt Estuary” Comput. Method Appl. Mech.
Engrg.

At these dry points of the map, we use the same code provided by Hu et al. (2022) that were
previously used for solving the Saint-Venant Equations on the TPU, restricting flux propagation
from ’thin-film’ regions. We have clarified this point in the paper.

We solve for h, hu, and hv in our implementation. We further place a lower bound h > € in
all cells, meaning no properly 'dry’ cells are present, and handle cells with water depth h = € (the
value of € is problem dependent and on the order of centimeters) using the TPU code provided
by Hu et al. (2022). This ensures that no flux arrives from those cells with water height e. While
this approach has some important drawbacks (Kérna et al. 2011), it has been used extensively
(Bates & Hervouet 1999, Bunya et al. 2009, Gourgue et al. 2009, Nikolos & Delis 2009, Marras
et al. 2018) and is sufficient to keep the code stable within the scope of this study.

R1.4: In terms of validation, it would be nice to have an empirical proof of grid convergence and test
of convergence rate for the analytical cases (Cases 2.1—2.4). The authors should run simulations
with successively refined grids and report L-norms and convergence rates. Tables of L-norms could
be provided as an Appendiz.

We agree and have added a new section to the Appendix in which we document the grid
convergence analysis of cases 2.1-2.3. We also note that grid convergence analyses for Case 2.4
and 2.5 are singled out in Section 3.2 because simulation of tsunami inundation lies at the core
of our contribution. To clarify this, we have also added the following line to the end of the
introduction to the model verification and validation section (lines 191-193) to help direct readers.

We refer interested readers to the Appendix for the corresponding grid convergence analysis
under these relative error norms for the first three analytical cases, and we refer readers to
Section 3.2 for grid convergence analysis of the tsunami modeling in the context of the ISEC
benchmark as well as the Crescent City scenario.

R1.5: I feel that the beginning of Section 3.1 discussing the benefits of TPUs for communities with
no access to HPC facilities should be moved to the introduction, because it is a good motivation for
the conducted research. In that context, Behrens et al. (2022) also suggested cloud computing as a

possible alternative to HPC facilites. Perhaps it’s interesting to the authors.
Behrens et al. (2022). doi: 10.3389/feart.2022.762768

2

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

We wholeheartedly agree with this comment; the availability of rapid numerical simulation in
communities that do no have access to HPC facilities is a critical motivation for the conducted
research, and deserves a note in the introduction. With that in mind, we have added a brief
statement to our introduction when we speak to our reasoning for choosing TPUs.

We intentionally use a hardware infrastructure that is relatively easy to use and accessible
without specific training in high-performance computing. For the TPU infrastructure that we
use here, comprehensive tutorials using Google Colab are available at https://cloud.google.
com/tpu/docs/colabs. The TPU may increasingly become a standard hardware on which
physics-based machine-learning algorithms will be built (Rasp et al. 2018, Mao et al. 2020,
Wessels et al. 2020, Fauzi & Mizutani 2020, Liu et al. 2021, Kamiya et al. 2022). Through its
relative ease of access and potential for rapid simulation capabilities, cloud computing provides a
valuable alternative to higher performance computing clusters (Behrens et al. 2022, Zhang et al.
2010), particularly for communities with limited access to local clusters.

R1.6: Can the authors comment on the process of getting access to Google’s TPUs? From the
website, the cloud service seems to be a paid service. Is it similar to renting time on an AWS or
Microsoft Azure?

A valuable and needed clarification. We have added some more detailed information clarifying
Cloud TPU access in our brief section about running our code with TPU access in the Appendix.
Google’s Cloud TPUs, with up to 8 cores, are currently available to many regions for free
via Google Colab (see https://cloud.google.com/tpu/docs/regions-zones). The only paid
component comes from the connection of the TPU to long-term storage, a necessity for providing
DEM files to the TPU and managing TPU outputs. The costs for this storage are minimal but
vary based on the size of simulation and the region of access.

Due to the restrictions of the TPU using Google Cloud Storage, a user must leverage Google’s
buckets to run the notebooks. At the time of writing this article, 8 TPU cores are readily available
on Google Colab for free, but Google Cloud Storage buckets are a paid subscription service. With
a computing project setup on Google Cloud and a corresponding bucket with open permissions
(with steps specified in https://cloud.google.com/storage/docs/creating-buckets), users
can quickly run any of the example notebooks or design their own simulation. Any of the example
notebooks available on GitHub (with the exclusion of tpu_tsunami.ipynb, which contains the
full implementation with all of the different scenarios; and Create_Scenarios.ipynb, which can
aid users in generating a custom DEM file) can be quickly ran by going through the notebook
after a few setup steps.

R1.7: In section 3.3, the authors should briefly report the formal accuracy of GeoClaw.

We appreciate the reviewer’s suggestion for noting GeoClaw’s own accuracy, and agree that some
accuracy information should be shared. We have clarified the accuracy, time-stepping, and com-
putational resources of our GeoClaw runs, and have included a brief grid convergence analysis.
For comparison purposes, we run GeoClaw (Clawpack Development Team 2020, Mandli et al.
2016, Berger et al. 2011) using 4 CPU threads that we were allocated for free via Google Colab.
Our GeoClaw simulation uses the same DEM file and is computed at an 8 m resolution without
mesh-refinement. We use an adaptive time-step bounded by the Courant—Friedrichs—Lewy con-
dition, and determine the spatial fluxes using a second-order, rate-limited Lax-Wendroff scheme.
In Fig. 14, we see lower relative error norms as we approach higher resolution in our simulation
of our Crescent City scenario. The GeoClaw numerical solution can be compared to our TPU
numerical solution in Fig. 13, where the top row includes several instances in time of the TPU
numerical solution, and the bottom row depicts the GeoClaw numerical solution at the same

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

instances in time. Although some differences can be seen in inundation by ¢ = 380 s in the
rightmost plots, the solutions do generally appear similar over time, lending credibility to the
validity of the numerical solution presented in this paper.

tsunamiTPUlab

129 2592 1296 2592 3888 129 2592 2592

3888 184
X [m] X[m]

N
s
Elevation [m]

Water Height [m]

7200 E
13 1295 2592 3888 s184 1296 1206 2592 o 1296 259> | 3888
X [m] [m] X1 X{m] X [m]

Figure 13: TPU solution (top row) at several time instances compared to the GeoClaw solution
(bottom row). The arrival of the tsunami front (¢ = 100,180 s), the inundation of the harbor
(t = 260 s), and coastal inundation and reflection is depicted, and relatively comparable.

Error Norm in GeoClaw Simulation of Crescent City Scenario

10-1 4

1072 4

1073 4

Relative Error Norm [-]

1074 4 e Ly

Resolution [m]

Figure 14: GeoClaw relative error norms for a 100 s simulation for our Crescent City Scenario
under varying resolutions. 4 m resolution is used as the benchmark.

R1.8: I suggest that some part of the discussion could be separated as conclusions. I think the part
starting with ”Though just a starting point ...” on about line 359 on page 22 marks the end of
discussion of results and starts the conclusions and outlook. But the authors may disagree.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

We agree that the last several paragraphs of the discussion reads like a conclusion. We have
followed the suggestion, and separated out some of the content into a conclusions section, and
also removed some content that felt repetitive in the discussion. What follows is the content of
the brief Conclusion section.

Conclusion

We present a first step towards an accessible software package that leverages the powers of
Cloud-based TPU computing for improving the capabilities of risk managers and communities
to mitigate the destructive onshore impacts of tsunamis. We verify and validate our current
implementation to ensure that it is capable of simulating inundation from a Carrier N-wave over
real topography. These simulations are comparable to that ran by the popular open-source solver
GeoClaw (Clawpack Development Team 2020, Berger et al. 2011), but can be run at higher speeds
through Google Colab and requires less expertise in scientific computing. As a result, high quality
tsunami simulations are available to remote communities for rapidly evaluating different risk-
mitigation options including but not limited to nature-based solutions. Future efforts can then
be dedicated to better meeting the needs of risk managers with a platform available through the
cloud, be that in coupling our shallow water equations package to earthquake-tsunami generation
models, or experimenting with different numerical implementations to enable even more rapid
simulation of these equations.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Response to Reviewer #2

R2.Section 3.1: In the section 3.1 Number of TPU cores”, the scalability of the model is ana-
lyzed by running the Crescent City case with a different number of TPU cores (strong scaling, see
https:/ /hpc-wiki.info/hpc/Scaling). However this should be further elaborated. For sake of clarity,
I suggest adding a row in Table 1 showing the speed up versus using a single TPU and then analyze
the results observed. Also, a plot showing how the measured speed-up compares with an ideal scaling
could be added.

There was no indication of the specific hardware employed. As far as I know there are several
generations of TPU available with different capabilities (see https://ieeexplore.ieee.orq/document/9499913).
The reader may need this information in order to reproduce the experiments or to know what per-
formance should be expected when using the model for their own application.

It is also unclear how the time was measured, the manuscript states that “we first measure the
wall-clock time of a simulation” and the table caption adds: ”This runtime excludes transfer times
between the CPU and TPU”. Does this mean that the preprocessing was excluded and only the main
loop of the simulation was measured? Please, clarify

We thank the reviewer for these thoughtful suggestions to emphasize clarity and transparency in
our TPU usage. Throughout the paper where specific hardware was utilized and performance is
of key importance, we have specified that we were assigned a TPUv2 via Google Colab. Other
users may see differences in performance and capabilities based on the TPU device they are
allocated. Additionally, we have clarified what we mean by ’wall-clock time’, and have moved
towards measuring the wall-clock time of each time-step. The updated section 3.1 reads:

As noted in the introduction, in communities where users may not have access to high perfor-
mance computing facilities, the Cloud TPU Platform provides a particularly valuable resource
where users can perform large-scale computations rapidly. To quantify the potential speed-up
enabled by TPUs with increasing numbers of cores, we observe the average wall-clock time taken
in computation for each time-step with the exclusion of the first time-step. This first time-step
includes several preprocessing functions, such as reading DEM files into TPU memory, setting
up initial conditions, and initializing the Tensorflow workflow. Similarly, we calculate runtime
based on the amount of time spent in computation with the exception of this first step, with
time which is variable from run-to-run. As shown in Table 7?7, the problem size posed by the
realistic scenario is sufficient to see rapid improvements in runtime based on the number of cores.
We note that our analysis may vary user-to-user, depending on the TPU version that they are
allocated and the number of cores available to them. Our simulations were all conducted with
a TPUv2, and we extend our analysis only up to 8 TPU cores because, at the time of writing,
Google Colab only provides 8 cores for free in our region.

Number of Cores 1 2 4 8
Average Runtime / Time-step [ms] | 25.8 | 16.5 | 9.6 | 6.4
Speedup over 1 Core -] * 1.6 | 2.7 | 4.03

Table 1: Average TPU Runtime per time-step (in milliseconds) with varying numbers of TPUv2
cores. The Crescent City configuration at an 8 m resolution is used, with time-steps of At = 0.02 s
for a total of 400 simulated seconds. The domain is a grid of approximately 901 by 1992 elements;
TPU cores find solutions to subdomains divided in the y-direction as suggested by Hu et al. (2022)
and graphically depicted in Fig. 3

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

R2.Section 3.2: In section 3.2 the convergence and runtime were measured varying the spatial
resolution for the Crescent City and the ISEC benchmark cases but the measurements are not
properly analyzed and discussed. It looks like there is not a clear convergence, for example In the
ISEC benchmark the error with 2m is lower than 1m, also it is lower using 8m than with 4m
resolution. How do you interpret these observations? It looks that the errors in these resolutions
vary in similar error ranges. In my opinion, even lower resolution values should be tested (e.qg.
16m 25m. ..) to check when the error increases significantly. The Crescent City case does not have
an analytical solution, but following the observations of the ISEC benchmark I would not say that
the results with 2m resolution are the best, in this case and in my opinion tests with a much coarse
resolution should be also tested.

It would be also interesting to analyze how the runtimes scale with the number of the elements
of the simulation. For example, in the Crescent City the 2m case has 16z elements than the 8m
case but the run time only increases 11x. In the ISEC benchmark however, from 8m to 2m, the run
time is only 1.7z higher. How do you interpret this?

In tables 2 and 3 an ”Efficiency” row is shown, however there are no clues on the text on what
these magnitudes represent or how it was calculated.

We really appreciate these constructive comments regarding section 3.2. They helped us realize

that ’simulation wall-clock time’ is not a particularly helpful metric for analyzing computational
speedup. Because there is so much variation in the amount of time taken in preprocessing steps
and reading from storage, we have shifted our focus to average time spent in each simulation
time-step. In alignment with your other notes, we have expanded upon the ’efficiency’ metric as
part of this analysis of how the runtimes scale with the number of elements of the simulation.

By reevaluating the ISEC benchmark, we have also discovered a consequential bug in how

we were calculating error with respect to the three available spatial distributions. After making
this correction, we ran additional simulations at even lower resolutions, i.e., 16m and 25m and
corrected our calculation of the relative error norms in the Crescent City simulation. After im-
plementing these changes, we see behavior that appears to more properly resembles convergence.
We have updated section 3.2. accordingly:
Simulating tsunami runup typically requires large domains and sufficiently high resolution to
accurately capture tsunami propagation and inundation over complex topography. Therefore,
we continue analyzing our Crescent City scenario for both convergence and the average runtime
spent for each time-step under varying degrees of resolution, shown in Fig. 11 and with numerical
results given in Table 2. As is expected, relative error norms fall as we reach higher resolutions
and lower cell sizes, which in turn corresponds to increasing runtime spent for each time-step.
To expand upon the scaling of runtime, we calculate an accessory ’efficiency’ metric to more
specifically understand how runtime scales with the number of elements, calculated by dividing
the total number of elements over the average runtime per time-step. Higher values for this
efficiency metric would be associated with a greater number of computations for grid elements
being completed per unit time. We see that this efficiency is maximized for high numbers of
elements as expected while the TPU reaches capacity.

We perform the same analysis under varying degrees of resolution using the benchmark from
the Inundation Science and Engineering Cooperative (ISEC 2004) that we previously validated
against in Section 2.4. We show a qualitative comparison of the tsunami propagation under
different resolutions are graphically depicted in Fig. 12 in the top two and bottom left figures. In
the bottom right plot of Fig. 12, we see the expected fall in runtime based on coarser resolution
(black), and a rise in relative error, an error representing the accumulation of all three time
instances for which the ISEC benchmark is defined. We provide an overview of the corresponding

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

values and efficiency metrics in Table 3. Since the total number of elements is smaller for the
ISEC benchmark as compared to the Crescent City scenario, we are able to see even lower
efficiency as the TPU is even further away from reaching full capacity.

Relative Error Norm [-]
-
Runtime per Time-step [ms]

S
~
Ss
~

TPU Runtime SS 10
—_ ~

per Time-step

e m——————

Resolution [m]

Figure 11: Average TPU runtimes per time-step (black) and relative Ly (gold) and L, (green)
norms under varying resolutions for computing the tsunami propagation over the Crescent City
DEM.

Resolution [m] 2 4 8 16 32
Average Runtime/Time-step [ms] | 69.8 | 18.5 6.4 2.9 1.2
Number of Elements [millions] 29 7.2 1.8 0.45 0.11
Efficiency [elements / ms] 4.1E5 | 3.8E5 | 2.8E5 | 1.6E5 | 9.1E4
Relative Ly Error Norm * 0.0214 | 0.0236 | 0.0247 | 0.0411
Relative Lo, Error Norm * 0.245 | 0.274 | 0.275 0.363

Table 2: Approximate TPU Runtimes (in seconds) for a 400 second simulation with varying res-
olutions of the Crescent City Configuration using time step of At = 0.02 s. We compute L Error
norms against the 2 m resolution for correctness at times t = 100, 200, 300, and 400 seconds in the
coastal region. All simulations ran on a single TPUv2 with 8 cores.

Authors’ Response Letter

Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Topography Resolution 4 m Topography Resolution 4 m
20 ISEC Benchmark Resolution 8 m 204 ISEC Benchmark Resolution 8 m
— Resolution 1 m Resolution 16 m — Resolution 1 m Resolution 16 m
—— Resolution 2 m Resolution 32 m —— Resolution2 m Resolution 32 m
104 104
N N
-10 -104
204 20+
-1000 *B‘Gl) *B‘UO *4‘00 *Z‘OO 2[')0 —1000 *5‘00 *6‘00 *4‘00 *Z‘OO 0 260
X [m] X [m]
Topography Resolution 4 m *
\,
204 ISEC Benchmark Resolution 8 m 10
—— Resolution 1 m Resolution 16 m 0.4+ L 'E
—— Resolution 2 m Resolution 32 m o ‘\ = =
104 £ N Ly s &
£ 2
o n
Z 03 \ @
—_ . \ £
E o 2 \\ =
N w \ 5
v N o
Z 02 \ : u
-10 © by TPU Runtime r4 g
S) £
& <. per Time-step =
&
20 01 e r2
_______________ e

-1000 -800 -600 —400

X [m]

- ’ “ z g z:{esulution [m?3 “ -
Figure 12: Top left: ISEC Benchmark comparison at 160 seconds. Top right: ISEC Benchmark

comparison at 175 seconds. Bottom Left: ISEC Benchmark comparison at 220 seconds. Bottom
Right: TPU runtime for each time-step (black) and corresponding relative Ly (green) and L

(gold) error norms for varying simulation resolutions.

Resolution [m] 1 2 4 8 16 32
Average Runtime/Time-step [ms] | 11.17 | 3.85 | 1.81 1.09 | 0.87 | 0.74
Number of Elements [millions] 5.1 1.3 0.33 | 0.082 | 0.022 | 0.006
Efficiency [elements / ms] 4.5E5 | 3.3E5 | 1.8E5 | 7.5E4 | 2.5E4 | 8.5E3
Relative Ly Error 0.054 | 0.087 | 0.190 | 0.267 | 0.325 | 0.446
Relative Lo, Error 0.095 | 0.091 | 0.242 | 0.312 | 0.374 | 0.468

Table 3: Average TPU runtimes per time-step (in ms) under varying resolutions for the ISEC
Tsunami Benchmark using time step of At = 5-1072 s, along with corresponding L-norms calculated
with respect to all three times where the ISEC benchmark was available. All simulations ran on a
single TPUv2 with 8 cores.

R2.Section 3.3: In section 3.3, the proposed model is compared with GeoClaw, however some key
information is missing like the resolution used and how many TPU cores were employed in this
cOmparison.

Thank you for bringing this lack of information to our attention. We have added a clarification
to Section 3.3 and have added a summary figure of our accuracy analysis for GeoClaw.

For comparison purposes, we run GeoClaw (Clawpack Development Team 2020, Mandli et al.
2016, Berger et al. 2011) using 4 CPU threads that we were allocated for free via Google Colab.
Our GeoClaw simulation uses the same DEM file and is computed at an 8 m resolution without
mesh-refinement. We use an adaptive time-step bounded by the Courant—Friedrichs—Lewy con-

Authors’ Response Letter

Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

dition, and determine the spatial fluxes using a second-order, rate-limited Lax-Wendroff scheme.
In Fig. 14, we see lower relative error norms as we approach higher resolution in our simulation
of our Crescent City scenario. The GeoClaw numerical solution can be compared to our TPU
numerical solution in Fig. 13, where the top row includes several instances in time of the TPU
numerical solution, and the bottom row depicts the GeoClaw numerical solution at the same
instances in time. Although some differences can be seen in inundation by ¢ = 380 s in the
rightmost plots, the solutions do generally appear similar over time, lending credibility to the
validity of the numerical solution presented in this paper.

Y [m]

1206 2592 3888
X [m]

o

1296

1296

2592 3888

X[m]

2592 | 3888
X [m]

tsunamiTPUlab

1206

2592
X [m

%00

1800

2700

3600

4500

5400

6300

7200 4

1296

X{m]

1296

2592 | 3888 5184
X{m]

tsunamiTPUlab [

w00
1800
2100
E 3000
S
500
s400

6300

2502 3888

%00
1800
2700

E 3600

=
4500
5400

6300

7200 4

7200
0

1296

2597
m)

3888

20

Water Height [m]

40

m
3
Elevation [m]

Figure 13: TPU solution (top row) at several time instances compared to the GeoClaw solution
(bottom row). The arrival of the tsunami front (¢ = 100, 180 s), the inundation of the harbor
(t = 260 s), and coastal inundation and reflection is depicted, and relatively comparable.

Error Norm in GeoClaw Simulation of Crescent City Scenario

10-1 4

1072 4

10-3 4

Relative Error Norm [-]

1074 4

2} 24 2° 26
Resolution [m]

Figure 14: GeoClaw relative error norms for a 100 s simulation for our Crescent City Scenario
under varying resolutions. 4 m resolution is used as the benchmark.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

R2.Section 3.4: In my opinion Section 3.4 is the most controversial part of the article. I'm really
happy to see this analysis in the article since this is a very important topic that usually is not
covered in this kind of article. However, the energy utilization estimations were made in such a
naive way that the conclusions may be completely wrong:

At this point we don’t have any information about the generation of the TPU employed for
the research. This is a key point since the energy efficiency varies with the chip architecture and
integration process. The number of TPU cores for this estimation was not specified also.

At line 298 there is a vague statement of "2 trillion operations per second (TOPS) per Watt”
without specific reference. I found a reference to this in https://cloud.google.com/tpu/docs/tpus
but it refers to the "Edge TPU” series that as far as I know are a different product to the TPUs
used in the Google cloud. The TOPS concept itself is vague and could mean 8-bit integer or 16-bit
floating point operations since they are very useful for machine learning operations that are the
main purpose for this technology.

The authors state that 11.9 million floating point operations per time step were used, but it is
unclear how they estimated this number. If I am correct, this is nearly 7 operations per element
to solve SWE that looks quite low. The floating point precision used by the authors for numerical
computations is not specified, taking a look at the code seems to use FP32. I haven'’t found any
data on the TPU throughput in FP32. In hitps://ieeexplore.ieee.org/document/9499913 it is stated
that TPUv3 has a throughput of 123 TFLOPS in BF16 with a TDP of 450W per chip (and 2
cores per chip) so in FP32 the throughput should be lower (half?). This leads us to a power usage
one order of magnitude higher than stated in the paper. However, this may be wrong since the
throughput values are rarely reached in real world application so the power usage would be even
higher. Another approach, would be considering that the TPUv3 has 2 cores per chip and 8 cores
were used for the 8m simulation during 338 seconds running at the TDP lead us to roughly 165Wh,
several orders of magnitude higher than stated in the article.

The CPU power usage analysis has issues as well but I will not cover it in detail. It considers
that a CPU that supports 8 threads (but only has 4 cores) with a TDP of 15W will use 15/8 W
when using a single thread, which is completely wrong.

Therefore, this section (and the corresponding paragraph in the discussion) should be rewritten
or removed prior to publication.

We greatly appreciate this comment. This section has been challenging to conceptualize and
write for the reasons mentioned by the reviewer: it is both such an important component that
is often overlooked and at the same so challenging to quantify meaningfully. We agree that our
initial analysis was rather naive; but we share the reviewer’s opinion that this type of energy
usage analysis is valuable and should be more common in the literature on scientific computing.
Therefore, we do wish to continue trying to get at an order-of-magnitude estimate of the power
consumption benefits of using TPUs over CPUs for a simulation. We take advantage of the
same referenced document and adjust our analysis with heavy inspiration from the reviewer’s
comments, attempting to further redirect readers to resources that may carry out this energy
profiling more completely. We hope that our new analysis is up to an acceptable standard, and
would love any further suggestion regarding improving it. The updated section 3.4 now reads as
follows:

Estimates of energy efficiency of computing operations are becoming increasingly popular, espe-
cially in response to progressing climate change (Fuhrer et al. 2018, Fourestey et al. 2014). To
get a rough approximation of the comparative efficiency of a Google Cloud TPU over a CPU,
we ran the Crescent City tsunami propagation problem at 8 m resolution using GeoClaw on
a Google Cloud CPU node and our code on a Google Cloud TPU node. We do not have the

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

information nor access to the physical devices needed to conduct rigorous energy profiles to cal-
culate efficiency as is done by others (e.g., Ge et al. 2010), so we deliver an order-of-magnitude
estimate based on the Thermal Design Power of the devices that we are allocated via Google
Colab. We only compared resources that are freely available through Colab in order to compare
the efficiencies of computing resources that may be accessible to all users.

Based on Table 2, each time step takes an average of about 6.4 x 10~3 seconds on the TPUv2
that we were allocated by Google Colab, corresponding to about 0.32 seconds per simulated sec-
ond under our current time-stepping regime. The TPUv2 we were assigned contains 4 chips with
a Thermal Design Power of 280 W per chip (Jouppi et al. 2021), meaning that each simulated-
second then has an energy cost of approximately 0.1 Wh, leading to an approximately 40 Wh
energy cost for a 400 simulated-second simulation. At a price of 21 cents/kWh in the U.S. at
the time of writing this article, this simulation has a monetary cost of 0.84 cents.

When we ran GeoClaw for our CPU comparison on energy utilization, we enforced a fixed
time step on the GeoClaw package of equal size to that of our TPU, i.e., At = 0.02 s, rather
than leveraging GeoClaw’s adaptive time-stepping to have a fair comparison in terms of the
approximate number of operations. While the specific processor we were allocated for this CPU
comparison is not immediately clear, we deduced from the model name, CPU family, and model
number that we were allocated the Intel Xeon E5-2650 v4 with a base frequency of 2.2 GHz
and a Thermal Design Power of 105 W for 12 cores and 24 threads (Intel 2016). Of this, we
were allocated 2 cores/4 threads, and we took full advantage of all threads for our GeoClaw run.
Each time-step took approximately 4.2 seconds, corresponding to about 205 runtime seconds
per simulated second. If we assume ideal conditions leading to perfectly proportional scaling
of computational speed in increasing cores, we would expect that each simulated second would
take approximately 34.2 seconds when the Intel Xeon E5-2650 v4 was used to full capacity. This
means that each simulated second would have an associated energy cost on the order of 1.0 Wh.
A 400 modeled-second simulation would imply a total cost of approximately 400 Wh of energy,
or a monetary cost of 8.4 cents. With the corresponding TPU energy calculation in mind, our
conservative estimate suggests that a CPU simulation has approximately 10 times the energy
cost of running an equivalent TPU simulation under the same time-stepping conditions.

While these two simulations accomplish the same thing, they have vastly different associ-
ated performances. At times, rapid computation and simulations are necessary in the context
of risk analysis, and the associated energy costs of such a performant computation is worth
estimating. To address this, we push our energy estimate a touch further, providing another
order-of-magnitude estimate of what a CPU simulation conducted at TPU performance would
be. We extrapolate our previous assumptions further, assuming proportional scaling of com-
putational speed with increasing CPUs, and that the Thermal Design Power applies to each
CPU within a system independently. Because a simulated second of a full capacity Intel Xeon
E5-2650 v4 CPU takes approximately 34.2 seconds compared to the TPUv2’s 0.32 seconds, over
100 CPUs at full capacity would be needed for similar rapidity in simulation. Following similar
logic as done in the previous paragraph, a CPU simulation of equivalent performance would
have approximately 1000 times the energy cost of running a TPU simulation when ran under
the same time-stepping conditions.

R2.Minor Comments: Figure 1: please add a north arrow.

Lines 161, 163, 166, 445: The year of publication is missing in the Carson reference (2002 if I
am correct).

FEq. 9: Please, clarify why these two metrics were chosen. Ezxplain how differently the both
measure the relative error.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Line 275: Missing "Fig.” in: ...depicted graphically in (Fig.) 10 and in table 2.

Figure 10 and 11: The colors in the figure caption (purple and blue) are not the colors present
in the figure (black, turquoise and lime).

Figure 11: The caption only describes the lower right panel. Also the chosen time instants of
the simulation were not specified.

I We have made these corrections.

R2. Minor Comments: Line 88: a properly referenced link about the usage of Google Cloud TPU
18 encouraged. Maybe a whitepaper, an article or some documentation.

While we share the reviewer’s feelings about proper referencing, this in particular we wished to
acknowledge as a unique situation. We did not provide a properly referenced link about TPU
usage since most of the user-friendly tutorials provided by Google for learning about TPUs is
in the form of Colab Notebooks and interactive documentation. Rather than searching for and
providing a less accessible whitepaper about TPU usage, we suggest that interested readers of
all backgrounds can learn about TPU utilization with the more accessible tutorials. To improve
our transparency, we provide a direct URL and explain our intention for providing the reader
with the URL in the paper. The suggested line now reads:

We intentionally use a hardware infrastructure that is relatively easy to use and accessible
without specific training in high-performance computing. For the TPU infrastructure we use
here, there are comprehensive tutorials available using Google Colab at https://cloud.google.
com/tpu/docs/colabs.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Response to Reviewer #3

R3.1: The authors present results of a case study in Crescent City, CA. They should expand their
discussion of how the results can be used by mitigation planners. For example, they could show a
map which indicates the high-water mark reached by the tsunami. But that clearly is directly related
to the initial wave height (boundary condition). Since earthquakes can be any magnitude, the height
of a resulting tsunami can vary widely. Given that, it is not clear how such a simulation is useful
to planners. It could be that the steepness of the terrain is such that as the wave height increases
the corresponding high water marks start to converge. A plot showing successive high water marks
would be a very informative and interesting addition. Furthermore, if the relationship between the
earthquake magnitude and the wave height is well known given the tectonics offshore of Crescent
City, the high water marks could be labeled with the magnitude of the earthquake.

We thank the reviewer for the suggestion. We agree that it is important to clarify how our work,
despite not being a fully complete software package, could be useful to risk managers modeling
coastal flooding. While not ideal and only reflecting a first step in developing the capabilities
of TPU-based simulations, we have added a figure to our section 2.5 with the Crescent City
scenario, indicating different high-water marks achieved by different tsunami heights from a
Carrier N-wave 1 km offshore. This figure sheds light on what regions in particular are exposed
to high amplitude tsunamis, a detail that could be potentially useful as risk managers evaluate
which communities are at higher risk. We have added the following paragraph and a figure to
our section 2.5 on lines 280-285.

The protective benefit of the mountain range can be further seen in Fig. 10. This high-water
map from a 10-min simulation of runup due to the Carrier N-wave shows the spatial variation
of which locations see at least 1 m of inundation under different wave amplitudes. While more
work would be necessary to leverage our tsunami software package to connect the inundation by
a generated wave to the forcing generated by earthquakes, a risk manager can see how higher
magnitude tsunamis may disproportionately affect certain locations over others.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

800 -
1600 -

2400 A

E 3200
=

4000 1

4800 1

—— 2m Initial Height
—— 4m Initial Height
5600 - 6m Initial Height

8m Initial Height
10m Initial Height J

0 748 1496 2244 2992 3740 4488 5236 5984

X [m]

Figure 10: 1 m inundation High-water map for Crescent City, CA, under different amplitude Carrier
N-waves initialized 1 km offshore. 10 minutes of simulated time. Darker shades of blue indicate
the extent reached by higher amplitude N-waves.

R3.2: Why does the error go down if the grid size is increased? I suggest the authors either explain
this phenomena or further increase the grid size until the error is clearly increasing.

We thank the reviewer for these suggestions. This exposed a miscalculation of the L relative
error norms, as well as the necessity to continue increasing the grid size. We have executed this
suggestion in section 3.2. Some high-level analysis is added to the section, as well as updated
figures. We direct the reviewer to this section 3.2, but also repeat some of that text below.
Simulating tsunami runup typically requires large domains and sufficiently high resolution to
accurately capture tsunami propagation and inundation over complex topography. Therefore,
we continue analyzing our Crescent City scenario for both convergence and the average runtime
spent for each time-step under varying degrees of resolution, shown in Fig. 11 and with numerical
results given in Table 2. As is expected, relative error norms fall as we reach higher resolutions
and lower cell sizes, which in turn corresponds to increasing runtime spent for each time-step.
To expand upon the scaling of runtime, we calculate an accessory ’efficiency’ metric to more
specifically understand how runtime scales with the number of elements, calculated by dividing
the total number of elements over the average runtime per time-step. Higher values for this
efficiency metric would be associated with a greater number of computations for grid elements
being completed per unit time. We see that this efficiency is maximized for high numbers of
elements as expected while the TPU reaches capacity.

We perform the same analysis under varying degrees of resolution using the benchmark from
the Inundation Science and Engineering Cooperative (ISEC 2004) that we previously validated
against in Section 2.4. We show a qualitative comparison of the tsunami propagation under
different resolutions are graphically depicted in Fig. 12 in the top two and bottom left figures. In
the bottom right plot of Fig. 12, we see the expected fall in runtime based on coarser resolution
(black), and a rise in relative error, an error representing the accumulation of all three time
instances for which the ISEC benchmark is defined. We provide an overview of the corresponding
values and efficiency metrics in Table 3. Since the total number of elements is smaller for the

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

ISEC benchmark as compared to the Crescent City scenario, we are able to see even lower
efficiency as the TPU is even further away from reaching full capacity.

Relative Error Norm [-]
S
7
-
-
Runtime per Time-step [ms]

—— ~<

TPU Runtime SS 10

- ~

per Time-step

.....
Sm—————

Resolution [m]

Figure 11: Average TPU runtimes per time-step (black) and relative Ly (gold) and Lo (green)
norms under varying resolutions for computing the tsunami propagation over the Crescent City

DEM.

Resolution [m] 2 4 8 16 32
Average Runtime/Time-step [ms] | 69.8 | 18.5 6.4 2.9 1.2
Number of Elements [millions] 29 7.2 1.8 0.45 0.11
Efficiency [elements / ms] 4.1E5 | 3.8E5 | 2.8E5 | 1.6E5 | 9.1E4
Relative Ly Error Norm * 0.0214 | 0.0236 | 0.0247 | 0.0411
Relative Lo, Error Norm * 0.245 | 0.274 | 0.275 | 0.363

Table 2: Approximate TPU Runtimes (in seconds) for a 400 second simulation with varying res-
olutions of the Crescent City Configuration using time step of At = 0.02 s. We compute L Error
norms against the 2 m resolution for correctness at times t = 100, 200, 300, and 400 seconds in the
coastal region. All simulations ran on a single TPUv2 with 8 cores.

Authors’ Response Letter

Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Topography Resolution 4 m Topography Resolution 4 m
20 ISEC Benchmark Resolution 8 m 204 ISEC Benchmark Resolution 8 m
— Resolution 1 m Resolution 16 m — Resolution 1 m Resolution 16 m
—— Resolution 2 m Resolution 32 m —— Resolution2 m Resolution 32 m
104 104
N N
104 -10
—20 4 -204
-1000 *B‘Ol) *B‘UO *4‘00 *Z‘OO 2[')0 —1000 *5‘00 *6‘00 *4‘00 *Z‘OO 0 260
X [m] X [m]
Topography Resolution 4 m *
\,
204 ISEC Benchmark Resolution 8 m
—— Resolution 1 m Resolution 16 m 0.4+ L
—— Resolution 2 m Resolution 32 m o ‘\ =
104 £ N L
£
o
—_ Z03 \
E. 0 § \\
IS
N w \,
[AN
Z 02 \ R
_104 © Ly TPU Runtime
< N [—— N
& <o per Time-step
—20 4 01 Sw—___
_______________ e

-1000 -800 -600

—400 —-200

X [m]

20 2!

2? 2?
Resolution [m]

A
S)

[N)

Runtime per Time-step [ms]

Figure 12: Top left: ISEC Benchmark comparison at 160 seconds. Top right: ISEC Benchmark
comparison at 175 seconds. Bottom Left: ISEC Benchmark comparison at 220 seconds. Bottom
Right: TPU runtime for each time-step (black) and corresponding relative Ly (green) and L

(gold) error norms for varying simulation resolutions.

Resolution [m] 1 2 4 8 16 32
Average Runtime/Time-step [ms] | 11.17 | 3.85 | 1.81 1.09 | 0.87 | 0.74
Number of Elements [millions] 5.1 1.3 0.33 | 0.082 | 0.022 | 0.006
Efficiency [elements / ms] 4.5E5 | 3.3E5 | 1.8E5 | 7.5E4 | 2.5E4 | 8.5E3
Relative Ly Error 0.054 | 0.087 | 0.190 | 0.267 | 0.325 | 0.446
Relative Lo, Error 0.095 | 0.091 | 0.242 | 0.312 | 0.374 | 0.468

Table 3: Average TPU runtimes per time-step (in ms) under varying resolutions for the ISEC
Tsunami Benchmark using time step of At = 5-1072 s, along with corresponding L-norms calculated
with respect to all three times where the ISEC benchmark was available. All simulations ran on a
single TPUv2 with 8 cores.

R3.3:Scaling data should include relative numbers, e.g., the ratio of the 2 cores result to the 1 core
result.

We have also incorporated the suggestion to include some relative numbers, particularly in the
suggested table in section 3.1 on page 17 of the revised manuscript. We have also reproduced
this in the response letters, please see Table 1. What follows is the corresponding text of the
section.

As noted in the introduction, in communities where users may not have access to high perfor-
mance computing facilities, the Cloud TPU Platform provides a particularly valuable resource
where users can perform large-scale computations rapidly. To quantify the potential speed-up

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

enabled by TPUs with increasing numbers of cores, we observe the average wall-clock time taken
in computation for each time-step with the exclusion of the first time-step. This first time-step
includes several preprocessing functions, such as reading DEM files into TPU memory, setting
up initial conditions, and initializing the Tensorflow workflow. Similarly, we calculate runtime
based on the amount of time spent in computation with the exception of this first step, with
time which is variable from run-to-run. As shown in Table 1, the problem size posed by the re-
alistic scenario is sufficient to see rapid improvements in runtime based on the number of cores.
We note that our analysis may vary user-to-user, depending on the TPU version that they are
allocated and the number of cores available to them. Our simulations were all conducted with
a TPUv2, and we extend our analysis only up to 8 TPU cores because, at the time of writing,
Google Colab only provides 8 cores for free in our region.

Number of Cores 1 2 4 8
Average Runtime / Time-step [ms] | 25.8 | 16.5 | 9.6 | 6.4
Speedup over 1 Core -] * 1.6 | 2.7 4.03

Table 1: Average TPU Runtime per time-step (in milliseconds) with varying numbers of TPUv2
cores. The Crescent City configuration at an 8 m resolution is used, with time-steps of At = 0.02 s
for a total of 400 simulated seconds. The domain is a grid of approximately 901 by 1992 elements;
TPU cores find solutions to subdomains divided in the y-direction as suggested by Hu et al. (2022)
and graphically depicted in Fig. 3

R3.4: 7leverage the newly developed Google’s Tensor Processing Unit (TPU)” should be "leverage
Google’s newly developed Tensor Processing Unit (TPU)”, although "newly” may be inapt, given
the first version was developed 8 years ago.

Please check references, for example, line 38 should have (Gordon, 2012).

FEarthquake should not be hyphenated (line 95).

Typo: line 228 has a typo "t =, 7

Typo: line 242 “that that”

The authors should explain what is AS) in Fq. 9.

The number of simulated seconds should be mentioned re: Table 1.

Check table and figure references, e.q. line 275 should have ”Figure 107 not 7107; line 281
"Table 3”7

The authors tables have too many digits. It is irrelevant to have so many digits. In most cases
a few is appropriate.

Fig. 10: line colors referenced are incorrect.

The authors should use scientific notation in some cases and not use it in other cases. More
than 1 leading zeros: yes. No leading zeros with small magnitude number: no. Examples: 0.000749
— 7.5E-04, 4.76 x 10> — 476

Project Safe Havens should be Project Safe Haven

In the discussion (more than once) “tsunami simulation” should be “a tsunami simulation” or
“tsunami stmulations”

In their discussion of efficiency as relates to climate change, the chip efficiency is not the
only concern. The authors may want to mention that Google Cloud purchases enough renew-
able energy to cover their entire operations. hitps://cloud.google.com/blog/topics/inside-google-
cloud/announcing-round-the-clock-clean-energy-for-cloud

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

We thank the reviewer for pointing out these errors in detail, and making so many helpful
suggestions. We have corrected them in the new manuscript.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

References

Bates, P. D. & Hervouet, J.-M. (1999), ‘A new method for moving-boundary hydrodynamic prob-
lems in shallow water’, Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 455, 3107-3128.

Behrens, J., Schulz, A. & Simon, K. (2022), ‘Performance assessment of the cloud for prototypical
instant computing approaches in geoscientific hazard simulations’, Frontiers in Earth Science 10.
URL: https://doi.org/10.3389/feart.2022. 762768

Berger, M., George, D., LeVeque, R. & Mandli, K. (2011), ‘The geoclaw software for depth-averaged
flows with adaptive refinement’, Adv. Water Res. 34(9), 1195-1206.

Bunya, S., Kubatko, E. J., Westerink, J. J. & Dawson, C. (2009), ‘A wetting and drying treatment
for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations’, Comput.
Methods Appl. Mech. Engr. 198, 1548-1562.

Clawpack Development Team (2020), ‘Clawpack software’. Version 5.7.1.
URL: hitp://www.clawpack.org

Fauzi, A. & Mizutani, N. (2020), ‘Machine learning algorithms for real-time tsunami inundation
forecasting: A case study in Nankai Region’, Pure and Applied Geophysics 177, pages1437-1450.

Fourestey, G., Cumming, B., Gilly, L. & Schulthess, T. C. (2014), ‘First experiences with validating
and using the Cray Power Management Database tool’, arXiv .
URL: http://arziv.org/abs/1408.2657

Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Liithi, D.,
Osuna, C., Schér, C., Schulthess, T. C. & Vogt, H. (2018), ‘Near-global climate simulation at
1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0°, Geosci.
Model Dev. 11, 1665-1681.

Ge, R., Feng, X., Song, S., Chang, H.-C., Li, D. & Cameron, K. W. (2010), ‘Powerpack: Energy
profiling and analysis of high-performance systems and applications’, IEEE Transactions on
Parallel and Distributed Systems 21(5), 658-671.

Gourgue, O., Comblen, R., Lambrechts, J., Karna, T., Legat, V. & Deleersnijder, E. (2009), ‘A
flux-limiting wetting-drying method for finite-element shallow-water models, with application to
the Scheldt estuary’, Adv. Water Res. 32, 1726-1739.

Hu, L. R., Pierce, D., Shafi, Y., Boral, A., Anisimov, V., Nevo, S. & Chen, Y.-F. (2022), ‘Acceler-
ating physics simulations with tensor processing units: An inundation modeling example’, The
International Journal of High Performance Computing Applications 36(4), 510-523.

Intel (2016), Intel Xeon Processor E5 v4 Product Family Datasheet, Volume One: Electrical,
Technical Report 33809, Intel. Rev. 003US.

ISEC (2004), ‘Benchmark problem 1 tsunami runup onto a plane beach in the third interna-
tional workshop on long-wave runup models’, Website. http://isec.nacse.org/workshop/
2004 _cornell/bmarkil.html.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Jiang, G.-S. & Shu, C.-W. (1996), ‘Efficient implementation of weighted ENO schemes’, Journal of
Computational Physics 126(1), 202-228.
URL: https://doi.org/10.1006/jcph.1996.0130

Jouppi, N. P., Yoon, D. H., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G., Laudon, J.,
Li, S., Ma, P., Ma, X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou, Z. & Patterson, D.
(2021), Ten lessons from three generations shaped google’s TPUv4i : Industrial product, in ‘2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)’, IEEE.
URL: hitps://doi.org/10.1109/isca52012.2021.00010

Kamiya, M., Igarashi, Y., Okada, M. & Baba, T. (2022), ‘Numerical experiments on tsunami
flow depth prediction for clustered areas using regression and machine learning models’, Farth,
Planets and Space 74(127).

Karnd, T. de Brye, B., Gourgue, O., Lambrechts, J., Comblen, R., Legat, V. & Deleersnijder,
E. (2011), ‘A fully implicit wetting—drying method for dg-fem shallow water models, with an

application to the scheldt estuary’, Computer Methods in Applied Mechanics and Engineering
200(5), 509-524.

Liu, C. M., Rim, D., Baraldi, R. & LeVeque, R. J. (2021), ‘Comparison of machine learning
approaches for tsunami forecasting from sparse observations’, Pure and Applied Geophysics
178, 5129-5153.

Liu, X., Osher, S. & Chan, T. (1994), ‘Weighted essentially non-oscillatory schemes’, Journal of
Computational Physics 115(1), 200-212.

Mandli, K. T., Ahmadia, A. J., Berger, M., Calhoun, D., George, D. L., Hadjimichael, Y., Ketche-
son, D. I., Lemoine, G. I. & LeVeque, R. J. (2016), ‘Clawpack: building an open source ecosystem
for solving hyperbolic pdes’, PeerJ Computer Science 2, e68.

Mao, Z., Jagtap, A. D. & Karniadakis, G. E. (2020), ‘Physics-informed neural networks for high-
speed flows’, Computer Methods in Applied Mechanics and Engineering 360, 112789.

Marras, S., Kopera, M., Constantinescu, E., Suckale, J. & Giraldo, F. (2018), ‘A residual-based
shock capturing scheme for the continuous/discontinuous spectral element solution of the 2d
shallow water equations’, Adv. Water Res. 114, 45-63.

Nikolos, I. & Delis, A. (2009), ‘An unstructured node-centered finite volume scheme for shallow
water flows with wet/dry fronts over complex topography’, Comput. Methods App. Mech. Engrg.
198, 3723-3750.

Rasp, S., Pritchard, M. S. & Gentine, P. (2018), ‘Deep learning to represent subgrid processes in
climate models’;, PNAS 115(39), 9684-9689.

Shu, C.-W. (1988), ‘Total-variation-diminishing time discretizations’, SIAM Journal on Scientific
and Statistical Computing 9(6), 1073-1084.
URL: hitps://doi.org/10.1137/0909073

Wessels, H., Weiflenfels, C. & Wriggers, P. (2020), ‘The neural particle method — an updated la-
grangian physics informed neural network for computational fluid dynamics’, Computer Methods
in Applied Mechanics and Engineering 368, 113127.

Authors’ Response Letter Geosci. Mod. Dev. Manuscript #: EGUSPHERE-2023-116

Zhang, Q., Cheng, L. & Boutaba, R. (2010), ‘Cloud computing: state-of-the-art and research
challenges’, Journal of Internet Services and Applications 1(1), 7-18.
URL: https://doi.org/10.1007/s13174-010-0007-6

