Preprints
https://doi.org/10.5194/egusphere-2023-1159
https://doi.org/10.5194/egusphere-2023-1159
08 Jun 2023
 | 08 Jun 2023

Technical note: Extending sea level time series for extremes analysis with machine learning and neighbouring station data

Kévin André Daniel Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson

Abstract. Extreme sea levels may cause damage and disruption of activities in coastal areas. Thus, predicting extreme sea levels is essential for coastal management. Statistical inference of robust return level estimates critically depends on the length and quality of the observed time series. Here we compare two different methods for extending a very short (~10 years) time series of tide gauge measurements using a longer time series from a neighbouring tide gauge: Linear Regression and Quantile Regression Forest machine learning. Both methods are applied to stations located in the Kattegat basin between Denmark and Sweden. Reasonable results are obtained using both techniques with the machine learning method providing a better reconstruction of the observed extremes. Generating a set of stochastic time series reflecting uncertainty estimates from the machine learning model and subsequently estimating the corresponding return levels using extreme value theory, the spread of the return levels is found to agree with results derived from more physically-based methods.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

12 Jan 2024
Technical note: Extending sea level time series for the analysis of extremes with statistical methods and neighbouring station data
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024,https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Kévin André Daniel Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1159', Anonymous Referee #1, 07 Jul 2023
    • AC2: 'Reply on RC1', Kévin Dubois, 27 Oct 2023
  • RC2: 'Comment on egusphere-2023-1159', Anonymous Referee #2, 08 Sep 2023
    • AC1: 'Reply on RC2', Kévin Dubois, 27 Oct 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1159', Anonymous Referee #1, 07 Jul 2023
    • AC2: 'Reply on RC1', Kévin Dubois, 27 Oct 2023
  • RC2: 'Comment on egusphere-2023-1159', Anonymous Referee #2, 08 Sep 2023
    • AC1: 'Reply on RC2', Kévin Dubois, 27 Oct 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Kévin Dubois on behalf of the Authors (27 Oct 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (31 Oct 2023) by Anne Marie Treguier
RR by Anonymous Referee #2 (06 Nov 2023)
ED: Publish subject to minor revisions (review by editor) (14 Nov 2023) by Anne Marie Treguier
AR by Kévin Dubois on behalf of the Authors (14 Nov 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (15 Nov 2023) by Anne Marie Treguier
AR by Kévin Dubois on behalf of the Authors (17 Nov 2023)  Manuscript 

Journal article(s) based on this preprint

12 Jan 2024
Technical note: Extending sea level time series for the analysis of extremes with statistical methods and neighbouring station data
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024,https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Kévin André Daniel Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Kévin André Daniel Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson

Viewed

Total article views: 333 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
226 81 26 333 16 15
  • HTML: 226
  • PDF: 81
  • XML: 26
  • Total: 333
  • BibTeX: 16
  • EndNote: 15
Views and downloads (calculated since 08 Jun 2023)
Cumulative views and downloads (calculated since 08 Jun 2023)

Viewed (geographical distribution)

Total article views: 324 (including HTML, PDF, and XML) Thereof 324 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 12 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Coastal floods are due to extreme sea levels which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale permit to increase their predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighboring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.