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Abstract.  10 

Extreme sea levels may cause damage and disruption of activities in coastal areas. Thus, predicting extreme sea levels is 

essential for coastal management. Statistical inference of robust return level estimates critically depends on the length and 

quality of the observed time series. Here we compare two different methods for extending a very short (~10 years) time series 

of tide gauge measurements using a longer time series from a neighbouring tide gauge: Linear Regression and Random Forest 

machine learning. Both methods are applied to stations located in the Kattegat basin between Denmark and Sweden. 15 

Reasonable results are obtained using both techniques with the machine learning method providing a better reconstruction of 

the observed extremes. Generating a set of stochastic time series reflecting uncertainty estimates from the machine learning 

model and subsequently estimating the corresponding return levels using extreme value theory, the spread of the return levels 

is found to agree with results derived from more physically-based methods. 

1 Introduction 20 

Extreme sea levels (ESLs) can have disastrous consequences in the coastal zone in terms of flooding vulnerable assets, loss of 

lives, and disturbances (Brown et al., 2018; Vousdoukas et al., 2020; Wahl et al., 2017). Coastal floods generally result from 

a combination of ESL, wind, waves, tides and local conditions, including bathymetry and terrain features. Climate change also 

affects ESL events due to sea level rise and changes in storm frequency and/or intensity particularly (Rutgersson et al., 2021). 

Reliable estimates of current and future ESLs are urgently needed to mitigate the impacts of disaster risks and to inform 25 

adaptation to climate change. Long time series of observed sea levels are essential for improving confidence in statistically 

inferred return levels (RLs) (Menéndez et al., 2010; Woodworth et al., 2011) and are often considered essential for coastal 

planning. International initiatives such as the Global Sea Level Observing System (GLOSS) (Caldwell et al., 2012; Merrifield 

et al., 2012) and other works (Woodworth et al., 2010) have highlighted this necessity and called for recovering historical 
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records in what is called "data archaeology". Still, the temporal paucity of sea level time series (Holgate et al., 2013) remains 30 

a limitation for adequately estimating RLs and ESLs in many places.  

 

This technical note evaluates a machine learning method called Random Forests (RF) (Breiman, 2001) for extending the sea 

level time series obtained by a tide gauge of interest using a longer time series at a neighbouring tide gauge in the context of 

analysing sea level extremes. This is particularly relevant when the initial time series is very short e.g., in the order of ~10 to 35 

20 years, which is principally too short to allow reliable statistical inference of ESLs e.g., RL corresponding to a 100-year 

event. The RF methodology is compared to a linear regression (LR) model, which for short time series could also be expected 

to perform adequately. Our study area lies within the Kattegat basin, located on the west coast of Sweden around the city of 

Halmstad (Fig. 1). Here the highest recorded Swedish sea level of 235 cm was observed in November 2015 according to the 

Swedish Meteorological and Hydrological Institute (SMHI), this event was mainly due to local conditions leading to a sea 40 

level increase of 50 to 100 cm in comparison with neighbouring stations as Viken, the second one is a seiche effect which 

could have added around 25 cm to the total sea level (Johansson, 2018). In this area, tides vary with an amplitude of around 

20 cm during spring tides (Svansson, 1975), and current ESLs are mainly due to storm surge effects. But also, other factors 

could play a role, such as the preconditioning of the Baltic Sea (Andrée et al., 2022). Hieronymus et al. (2020) have shown 

that the Swedish West Coast is expected to be one of Sweden's most exposed areas due to rising sea levels.  45 

 

Different methods have been proposed for extending sea level records, such as Bernier et al. (2007), who use short observation 

time series associated with a 40-year hindcast surge model. Reconstructions by Cid et al. (2018) are based on tide gauge data 

and atmospheric conditions. Hieronymus et al. (2019) show a good performance of neural networks in predicting sea levels at 

tide gauges located along the Swedish coast based on different atmospheric variables and tide gauge records. Granata et al. 50 

(2021) find similar results when forecasting tides in the Venice region using different machine learning methods: Random 

Forest, Regression Tree and Multilayer Perceptron. Recently, Bellinghausen et al. (2023) have demonstrated the utility of 

using a Random Forest Classifier to satisfactorily predict the occurrence of ESLs at a few stations around the Baltic Sea within 

three days based on surface wind and pressure fields, precipitation and the prefilling state of the Baltic Sea. 

 55 

In the following, we systematically evaluate the performance of RF as means of extending a very short time series of only ten 

years, reconstructing past sea level variations based on a more extended time series from a neighbouring station. This approach 

is compared to the linear regression approach. Both methods have previously been found to reduce biases efficiently and are 

relatively computationally inexpensive with low complexity, when applied to a small number of input variables as is the case 

in this study. To evaluate the sensitivity of the reconstructed sea level with respect to the geographic distance to neighbouring 60 

stations, we apply the method to data from different stations. Finally, we consider the method’s potential and limitations with 

respect to the reconstruction of sea level extremes, when the time series of interest is very short, and inherently provide a poor 

sampling of even moderately extreme events. 
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Figure 1: Map of Northern Europe with indication of the study area and the tide gauge stations (red dots). 

2 Data and Methods 

2.1 Sea level data 

The datasets used in the analysis are hourly sea level observations from different stations available from SMHI (SMHI, 2022) 

and the Danish Meteorological Institute (DMI). Three stations are located on the west coast of Sweden: Ringhals (station 70 

number: 2105 “RINGHALS”), Halmstad (station number: 35115 “HALMSTAD SJÖV”) and Viken (station number: 2228 

“VIKEN”), and one station is located on the east coast of Denmark: Hornbaek (Hansen, 2007) (Fig. 1). The distance between 

Hornbaek and Viken is around 9 km, around 130 km between Hornbaek and Ringhals and 127 km between Viken and Ringhals 

(Table 1). The geographical location of the stations is important as it can change how the water level behaves, for example, if 

the stations are constricted in a channel as for Viken and Hornbaek. Here, ESL are defined as the total highest measured sea 75 

level including tides and storm surges, this choice is motivated because of the low tidal range in the area (Svansson, 1975). 

 

Each hourly time series is first linearly detrended and transformed into a time series of daily maxima from which the annual 

maximum is determined for each year in the series. When determining the annual daily maximum, we enforce a minimum 
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temporal separation of 2 days to assert the independence of events at each station. The data sets are of varying lengths (Fig. 2) 80 

ranging from twelve years (Halmstad station) to 129 years (Hornbaek station). Long-term linear trends (i.e., sea level rise) 

were estimated over the whole time series for all stations and found to range between 0.33 cm (Ringhals), 0.35 cm (Hornbaek), 

1.47 cm (Viken) and 5.51 cm (Halmstad) per decade. 

After being detrended, Hornbaek sea level varies from -145 to 187 cm, Viken sea level between -114 and 166 cm, Ringhals 

sea level is comprised between -105 and 162 cm and Halmstad sea level between -94 and 213 cm relative to mean sea level 85 

(Fig. 2). 

 

 

Figure 2: Sea level time series from the four tide gauge stations, i.e., daily maximum values (blue) and yearly maximum values (red 

circles). 90 

2.2 Methods 

The proposed approach for temporally extending short observed sea level time series at the station of interest (y) is based on 

using longer observed sea level time series at a neighbouring station (x) constituting the predictor. For each x/y station pair 

(Table 1), we use a temporally coinciding time series to set up each prediction model, for example 10 years. We will denote 

this the setup period. Within the setup period, models are fitted or trained using both time series for 80 % (eight years in our 95 

example) of overlapping data (training dataset), whereas the last 20 % (two years in our example) serve as validation dataset 
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to provide an unbiased evaluation of the model fit. The coinciding period outside the setup period constitutes the testing period. 

Two overall predictor approaches are employed – one using simple LR and one based on RF machine learning. 

For both approaches, we only use sea level of daily maxima at station y, time t denoted yt is predicted from the sea level at 

station, time t denoted xt. Nevertheless, since the sea level is sensitive to meteorological conditions, which are advected by the 100 

winds, the sea level at one station at time t might be better predicted if using time-lagged sea-level from another station, e.g. 

the sea-level at times t± a few days. Here, we are using daily maxima which might buffer this effect to some extent. However, 

it is most likely some slight improvements could be found when applying some time-delayed variables. Therefore, a short 

analysis has been done in testing time lagged variables for the setup period of 30 years for each x/y stations pair. 3 different 

tests have been done, the first one is the one used in this paper where no time-delayed predictors have been added: yt = RF(xt); 105 

in the second one we add 2 times delayed variables time t-1day and time t-2days: yt = RF(xt , xt-2, xt-1); in the third one we add 

4 times delayed variables time t-1day, time t-2days, time t+1day and time t+2days: yt = RF(xt , xt-2, xt-1, xt+1, xt+2). Slight 

improvements of RMSE values of around 1 to 2.5 cm as well as r values of around 0.03 to 0.08 for all x/y stations pair with 

best test being the third one and the second one presenting intermediate improvement. Bias values barely changed with changes 

of maximum 0.2 cm however, towards the extremes, values from the tests 2 and 3 present a bigger underestimation than the 110 

ones from the test 1. We then think that, for this study, the method used within the paper (test 1) is sufficient and even might 

be the best one to reproduce ESLs. This might be explained as the RF is only statistically based and applied on stations not so 

far away from each other (max 130km) which are therefore most of the time submitted to the same synoptic atmospheric 

phenomena within one day. Some more testing could be done to really assess the potential added values of using time delayed 

variables but this is outside of the scope of this study. 115 

2.2.1 Linear Regression 

Based on each x/y predictor-reconstruction station pair, a linear equation is found using the least squares method as means of 

determining the best fit coefficients. Based on the resulting equation, yt is predicted from xt. 

All coefficients values from the linear fits are positive and fairly close to one (0.765 to 1.12) meaning low sea level at one 

station corresponds to low sea level at another station and similar effect is then found for high and intermediate sea level. 120 

Therefore, the sea level at one station varies at a rather similar rate to the other one as a coefficient value of 1 would mean that 

the sea level measured at one station would be increasing or decreasing as the same rate at another one. The set 

xHornbaek/y_Halmstad presents the closer to one coefficient highlighting a strong correlation between those 2 stations. Only 

the xRinghals/y_Halmstad and x_Viken/y_Halmstad present a coefficient higher than 1. This suggests that the sea level at 

Halmstad varies at a higher pace than at the two predictor’s stations. 125 

2.2.2 Random Forest 

A probabilistic RF model is trained using the sea level at one station as the predictor (x) and the sea level at another station as 

the predictand (y). The RF method yields a mean and a standard deviation for each predicted value (Breiman, 2001). The RF 
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model is implemented using the MATLAB function TreeBagger (https://se.mathworks.com/help/stats/treebagger.html) where 

the regression method is based on a number of trees and minimum leaf size hyper-parameters. The mean and standard deviation 130 

values are predicted using the MATLAB function predict (https://se.mathworks.com/help/stats/treebagger.predict.html). We 

use the predict function for our regression problem and in the documentation, there is further description for the function for 

the weighted average of the prediction using selected trees. We do not use the option of TreeWeights but do use the output of 

the standard deviations of the computed responses over the ensemble of the grown trees, hence for regression: [Yfit,stdevs] = 

predict(B,X). Here, Yfit is a vector of predicted responses for the predictor data in the table or matrix X, based on the ensemble 135 

of bagged decision trees B. By default, predict takes a democratic (nonweighted) average vote from all trees in the ensemble. 

These parameters are here set to 500 and 1, respectively which have been chosen after a brief sensitivity analysis and are not 

the default choices for regression models. 

 

The LR is fitted and the RF model is trained using the same setup period for each station pair (Table 1). 140 

2.2.3 Model Testing 

To evaluate the proposed methodology, different analyses with different combinations of stations are used to test the spatial 

and temporal sensitivity (Table 1). Six analyses using different combinations of station data obtained at Hornbaek, Viken and 

Ringhals are carried out using the recent 10 full years (2010-2020) as the common setup period for model training and 

validation (cf. section 2.2.2). Six additional analyses are carried out, where we predict Viken sea levels from Hornbaek data 145 

using the two previous time periods (2000-2010) and (1990-2000) as well as using a 20-year setup period (1990-2010 and 

2000-2020) and a 30-year setup period (1990-2020) for training and validation to evaluate the temporal sensitivity. All the 36 

combinations possible have then been analysed to better estimate the spatial and temporal sensitivity. Finally, we compare 

reconstructed sea levels at Halmstad using the station data from Hornbaek, Viken and Ringhals, respectively (cf. section 3.2) 

for the period (2010-2020). In the latter case, we also estimate RLs based on the reconstructed time series and compare them 150 

to previous results reported for Halmstad. 

 

To assess the performance of each model, different goodness-of-fit metrics (GOFs) are chosen i.e., the root mean square error 

(RMSE) and the Pearson correlation coefficient (r). Also, the general bias (bias) and the 95th percentile bias (perc95-bias) 

between the observations and both model reconstructions (LR and RF) within the validation period are calculated.  155 

 

To evaluate the model’s performance towards the extremes, annual maxima and values above the 95th, 97th and 99th percentiles 

from observations are compared with the corresponding predicted values. 

 

 160 
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Table 1: Experimental setup and summary of analyses. 

Predictor Predictand Setup period 
Coinciding 

period 

Distance 

between 

stations 
Study 

station x station y 1 2 3  (km) 

Viken Hornbaek 2010-2020   1977-2020 9 

Spatial 

correlation 

analysis 

Ringhals Viken 2010-2020   1977-2020 127 

Hornbaek Ringhals 2010-2020   1968-2020 130 

Viken Ringhals 2010-2020   1977-2020 127 

Ringhals Hornbaek 2010-2020   1968-2020 130 

Hornbaek Viken 

2010-2020  
 

 

1977-2020 

1977-2020 

1977-2020 

1977-2020 

1977-2020 

1977-2020 

9 

 

Temporal 

correlation 

analysis 

 2000-2010  

  1990-2000 

2000 - 2020  

 1990 - 2010 

1990 - 2020 

Hornbaek 

Halmstad 

2010-2020   2010-2020 68 

case study Viken 2010-2020 
  

2010-2020 60 

Ringhals 2010-2020 
  

2010-2020 80 

 

2.2.4 RF method with random sampling to evaluate return levels (RLs) 

The RF method estimates the standard deviation associated with the predicted sea level daily maximum at each time point. We 165 

denote “RF method with random sampling” the following introduced methodology. Based on the RF daily means and standard 

deviations, we select the corresponding annual maxima from the reproduced time series and their associated standard 

deviations. We assume that a Gaussian distribution describes the probability for each predicted annual maximum. RLs are 

subsequently calculated using a generalised extreme value (GEV) distribution fitted to the annual maxima (Coles, 2001). This 

yields an ensemble of randomly drawn RL curves. The 95th percentile of the ensemble spread is calculated. 170 
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We denote x, the predictor time series of daily maxima; y, the predicted time series of daily maxima and stdy, the standard 

deviation associated with y so as: at time t, (yt, stdyt) = RF(xt) with RF, the trained RF model.  

We can then extract the time series of annual maxima from the mean predictions and its associated standard deviation that we 

denote Yn and stdYn
with 𝑛 ∈ [1, 𝑁] with N, the number of years in y. Let’s introduce a random variable R that is distributed 

normally such as: 175 

𝑅𝑛 ~ 𝒩(𝜇, 𝜎2) 𝑤𝑖𝑡ℎ 𝜇 = Yn 𝑎𝑛𝑑 𝜎 = stdYn
 𝑓𝑜𝑟 𝑛 ∈ [1, 𝑁] 

So, for each annual maximum, we can then randomly get a value which gives us one set of N annual maxima values. We then 

repeat this operation 10 000 times to get 10 000 sets of N annual maxima randomly obtained. We then fit a GEV distribution 

for each set which ultimately gives us 10 000 RLs curves randomly drawn. This is what we call the ensemble spread where 

we extract the 95th percentile to get a reasonable uncertainty spread.  180 

This method is further compared with the commonly used GEV approach applied directly on the N-year annual maxima of the 

predicted mean values from the RF model which we simply referred as RF.  

3 Results and discussion 

3.1 Model validation 

To validate the models, GOFs are calculated (partly presented in Table 2). For the time series of daily maxima, roughly similar 185 

statistics are found for all datasets whether using the QRF or LR. In general, we find slightly (but not significantly) better r 

and RMSE values associated with the LR and slightly better perc95-bias for the RF (not shown). For the annual maxima, the 

95th, 97th, and 99th percentiles sets, marginally higher r and lower RMSE values are found for the LR in nearly all cases, with 

a maximum difference of 4 cm for the RMSE (except for 4 simulations out of the 36 where RMSE values vary up to 10 cm 

towards the extremes) and 0.10 for the r value. Overall, RMSE values are between 10 and 40 cm, and r values are between 0.4 190 

and 0.9 in most cases when looking at the extreme sets. Smaller RMSE ranging from 5 to 15 cm and r values above 0.75 are 

found when directly looking at the predicted time series. Hence, error metrics are in general worse in both methods when 

calculated for extreme values (annual maxima and high percentiles) compared to overall values calculated from the full time 

series of predicted daily maxima values. For extremes, represented by the high percentile datasets, bias values range from -30 

to -2 cm i.e., an underestimation of the observed extreme values for both the LR and RF. As shown in Table 2, biases vary 195 

with a maximum difference between models of ~10 cm in almost all cases. This highlights the fact that both models lose 

accuracy to predict ESLs compared to predicting less extremes events. And this seems to be caused by the non-linear effects 

occurring during the extremes as the decrease of r shows. Figure 3 depicts the correlation between observations and models in 

predicting Viken sea levels from the Hornbaek data trained on the 2010-2018 period. A similar picture is observed in nearly 

all cases (not shown). As shown in Fig. 3, the RF model returns significantly higher sea levels and shows higher variability 200 

towards the most extreme range than the LR, except when predicting Hornbaek sea levels from Viken data, where the model 
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is trained on observations from the 1990-2000 and 2000-2010 setup periods (not shown). In those two cases, the RF does not 

correctly reproduce the extreme range, as they are out-of-sample while the predicted values are bounded, since the RF can 

only reproduce in-sample events, but those correspond to the highest ESLs which the LR also struggles to reproduce and 

therefore, the RF is not giving much lower values than the LR in this case. This effect disappears when the model is trained 205 

on a longer time period as we could see when investigating at the 20- and 30-years setup periods (not shown). Compared to an 

LR, it is clear that the inherently non-linear RF is better able to account for the few moderate extremes that occur during the 

8-year training period, whereas they are likely to be suppressed in a linearized model.  

 

 210 

Figure 3: Scatter plot between observations and LR (lefta) and RF (bright) for predicting Viken sea level (y) from the Hornbaek 

tide gauge (x) for the setup period 2010-2020. Blue points show the daily maxima and each corresponding blue bar shows the 

standard deviation (b). Coloured stars correspond to the 1st,2nd, 3rd , 4th, … to 99th percentile values of the dataset. 

 

Table 2 analyses the sensitivity to the distance between the two tide gauges for the 2010-2020 period. When the distance 215 

between two stations grows, the accuracy of both models seems to decrease, especially towards the extremes. For example, 

when looking at values on daily maxima but also on the extreme sets, RMSE values of around 8 to 20 cm and r values of 

around 0.7 to 0.9 are found for the sets reproducing Viken sea level from the Hornbaek tide gauge and its mirror set (9 km 

apart) compared to RMSE values of around 12 to 40 cm and r coefficients around 0.3 to 0.8 when reproducing Ringhals sea 

levels from Hornbaek data and its mirror set (130 km apart) (Table 2). The highest differences are also observed for the 220 

extremes (annual maxima or 95th, 97th and 99th percentiles). Similar results are found when comparing the sea level time series 
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for Hornbaek and Ringhals, based on Viken data, and when comparing predictions for Viken and Hornbaek sea levels based 

on Ringhals data (not shown). Comparing results from mirrored sets, for example, when predicting Viken sea levels from 

Ringhals data or predicting Ringhals sea levels from Viken data, we do not always find the same performance, especially 

towards the extremes, as measured by the GOFs. This can probably be explained on physical grounds due to localised 225 

phenomena resulting for example from the topography or the local meteorological conditions, however, this is beyond the 

current technical note. Indeed, there are two sets of stations with very significant geographical differences. Hornbaek and 

Viken stations lie inside of a channel (almost at the entrance). However, compared to this stations, other stations are on the 

open coast. In general, the RF method seems to be more accurate than the LR when predicting ESLs, where it is essential to 

capture the non-linear behaviour and variability associated with the complex natural interactions between drivers of ESL 230 

events. These are likely to become more prominent when observations are obtained at sites further away. Conversely, an LR 

is inherently constrained by a linearity assumption. 

 

Table 2: RMSE and biases between different datasets evaluated in the validation period(s). Noticeable improvements ( >5 cm ) in 

terms of model bias with respect to annual maxima using the RF model or LR model are highlighted in bold or underlined 235 
respectively. A negative bias corresponds to an underestimation of the predicted values, and a positive one (italic) an overestimation. 

Error metrics calculated over the testing period for the case study of Halmstad city are displayed in bold italic. Because of the short 

length of the testing period, we do not calculate the bias on the annual maxima. 

Predictor Predictand 

Setup period 

RMSE on daily maxima 

(cm) 

Bias on daily 

maxima (cm) 

Bias on annual 

maxima (cm) 

station x station y LR RF LR RF LR RF 

Viken Hornbaek 2010-2020 10.2 11.6 0.9 0.9 -5.3 -3.7 

Ringhals Viken 2010-2020 8.7 10.3 -0.5 -0.8 -28.4 -12.3 

Hornbaek Ringhals 2010-2020 12.1 14.3 -1.0 -1.1 -17.9 -21.1 

Viken Ringhals 2010-2020 8.7 10.3 0.5 0.4 -6.5 -8.7 

Ringhals Hornbaek 2010-2020 12.8 14.9 1.0 0.7 -30.6 -23.0 

Hornbaek 
 

Viken 

2010-2020 9.6 10.9 -0.9 -0.9 -17.5 -9.1 

2000-2010 9.2 11.2 -1.0 -0.9 -18.4 -10.8 

1990-2000 9.1 11.1 0.2 -0.03 -14.3 -11.8 

1990-2010 8.8 10.6 1.8 1.7 -12.0 6.6 

2000-2020 9.8 11.2 -1.1 -0.9 -18.3 -7.1 

1990-2020 9.6 11.3 -0.8 -0.7 -21.9 -15.7 

Hornbaek Halmstad 2010-2020 8.9 11.8 1.0 1.1   

Viken Halmstad 2010-2020 6.2 7.7 0.8 0.8   

Ringhals Halmstad 2010-2020 7.5 8.8 0.7 0.9   
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3.2 Halmstad 240 

The highest sea level recorded in Sweden occurred in Halmstad, indicating that Halmstad is highly susceptible to ESLs. 

However, the length of the local sea level time series is very short. Subsequently, the three stations: Hornbaek, Viken and 

Ringhals, are used for reconstructing the Halmstad sea level time series (Table 2). As shown above, using a RF or LR method, 

we can in principle reconstruct Halmstad sea levels back until 1891 for the period before observations became available in 

2009 with reasonable confidence, using the station Hornbaek as a predictor, since this has the longest observed time series. 245 

 

Because of the short length of Halmstad's time series, the training period is almost identical to the full time series which in 

practice makes it difficult to assess the model behaviour on extremes. Therefore, we used different 2-years of testing and 8-

years of training periods to analyze how the model behaves for Halmstad station (setup period 2010-2020 with different testing 

periods: 2010-2012 / 2011-2013 / 2012-2014 / … / 2017-2019 / 2018-2020) and this has been done for predicting Halmstad 250 

sea level from Hornbaek, Ringhals and Viken separately. Overall, the difference between each testing period is rather small 

with RMSE values differing from 1.5 to 4.1 cm; r differs of around 0.03 to 0.06; bias of 5.2 to 6.8 cm; the perc95-bias differs 

more with 5.4 to 16.5 cm. We found out that, as in the other simulations done (predicting Viken from Hornbaek for example), 

the RF visually (from correlation plots not shown) behaves better towards the extremes (at least slightly) than the LR for all 

sets and tests except for the testing period 2015-2017 when predicting Halmstad from Viken or Hornbaek. Also, between LR 255 

and RF, RMSE values only vary from maximum 2.9 cm (xHornbaek / yHalmstad) and 1.9 cm in the 2 other sets. The xViken 

/ yHalmstad set has the lowest RMSE values with an average across the simulations of 6.4 and 7.9 cm, bias of -0.2 and -0.4 

and perc95-bias of -2.7 cm in both LR and RF respectively. Therefore, it seems the model behaves relatively well on extremes 

for Halmstad station even though we cannot fully assure its behaviour because of the short length of observations. Also, this 

conclusion is partly reinforced by the analysis between surrounding stations where the testing could be done over a larger time 260 

period using the 2018-2020 period as testing with the 2010-2020 as setup period.  

 

In previous studies, Halmstad's RLs were calculated for current and future climate scenarios based on reconstructed sea levels 

from local wind speed observations of the Nidingen offshore station and Viken tide gauge data (Andersson, 2021). For 

Halmstad, RLs based on extended time series using the three neighbouring stations permit a reduction of the 95th percentile 265 

confidence interval (CI) compared with observations. Here, the full-period length of Halmstad’s observed values (station y) 

are concatenated with the predicted time series to get the longest and more accurate extended time series possible before a 

GEV fit is applied. Even so, RLs are still lower even though within the uncertainty range than the ones displayed by Andersson 

(2021), which is a good sign, except for the 200-year RL with Viken as predictor when based on the RF mean outputs (fig. 4-

a; Table 3). This can possibly be explained by the underestimation found towards the extremes on the predicted and therefore 270 

extended time series. This is why we introduced the RF method with random sampling which permits to represent more 

extremes values. 
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Table 3: Halmstad's RLs from reconstructed time series using the outputs from the RF and the RF method with random sampling 

applied from the station Hornbaek (italic) compared with assessment by Andersson (2021) in bold italic. 275 

Predictor: 

Station x  

5-year RL 

(m) 

10-year RL 

(m) 

50-year RL 

(m) 

100-year RL 

(m) 

200-year RL 

(m)   

Hornbaek 1.6 1.8 2.1 2.2 2.3 

RF 

Ringhals 1.6 1.8 2.3 2.5 2.7 

Viken 1.6 1.7 2.0 2.1 2.2 

Viken + wind 1.8 2.0 2.4 2.6 2.8 Andersson 

(2021) uncertainties 1.5 - 2.0 1.7 - 2.3 2.0 - 2.8 2.1 - 3.0 2.3 - 3.3 

Hornbaek 1.7 1.9 2.4 2.6 2.8 
RF method with 

random 

sampling 

95th percentile 

ensemble 

spread 1.6 - 1.8 1.8 - 2.0 2.2 - 2.7 2.3 - 3.0 2.5 - 3.3 

 

Conversely, we apply a RF-based random sampling to predict RLs probabilistically as described in section 2.2.4 (fig. 4-b), at 

Hornbaek, Viken and Ringhals (which permits extended time series of around 120 years, 35 years and 45 years, respectively). 

As would be expected due to the long time series, estimates based on Hornbaek data deliver the best performance and yield 

what seems like a reasonable 95th percentile ensemble spread (Fig. 4). The inferred RLs are slightly higher than the RLs derived 280 

directly from observations, which are associated with a very large 95th percentile CI due to the short length of the time series. 

The predictions using Viken data present the lowest RLs with a 95th percentile ensemble spread (upper values) corresponding 

almost to the median RLs from observations probably underestimating the extremes. On the other hand, predictions from 

Ringhals result in the highest RLs but like Viken are also associated with a rather large ensemble spread. Because of the lengths 

of the respective time series, there is low confidence in return periods of rare occurrences such as a 200-year event (a little less 285 

pronounced for Hornbaek-based predictions). This challenge of rare occurrences is evident when looking at the 95th percentile 

CIs for each RL curve resulting from the RF method with random sampling. For Halmstad, RLs based on inputs from the 

Hornbaek station following the RF method with random sampling are close to the ones displayed by Andersson (2021), 

highlighting the importance of considering the full uncertainty range when predicting high sea levels from a small sample of 

such events (Table 3). 290 
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Figure 4: RLs from each reconstructed time series to predict sea level for Halmstad based on RF model mean outputs (a) and 

following the RF method with random sampling (b). It displays Maximum Likelihood Estimates of the GEV distribution fits of each 

dataset associated with 95th percentile confidence intervals (CIs) (a) and 95th percentile ensemble spread (b) in background colours, 295 
and the dots are the empirical data from observations. Black error bars show RLs and 95th percentile CI calculated from Andersson 

(2021). 

4 Limitations 

It is evident that our statistical reconstructions are limited by several factors in particular local ocean dynamics and the length 

of the time series used. Both are especially important for extreme analysis. We implicitly assume that a time window of only 300 

10 years is sufficient for describing the relationship between two stations under normal ocean conditions, and while this study 

seems to support this hypothesis, it is by no means assured that this will be the case for any two neighbouring stations. 

Especially when the relationship is found to be highly non-linear. For non-normal situations like ESLs, it is evident that our 

setup period is principally much too short to learn the (inherently non-linear) dynamics related to rare sea level extremes, and 

that our modelling essentially yields an extrapolation of the normal ocean dynamics relating two sites, which may introduce 305 

significant biases in the subsequent RL estimates. This limitation is general for most if not all types of extensions of observed 

time series using neighboring data. Even, so it is trivial to assume that non-linear and non-parametric methods like the RF 

outperform other methods in terms of capturing extreme trends within a very short time window. 
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As indicated earlier, the RF is limited in range by the input values. Hence, in principle, this method is not suitable for 

extrapolating to higher values than what is seen in the training period, as highlighted when predicting Hornbaek sea levels 310 

from the Viken tide gauge based on the 1990-2000 and 2000-2010 setup periods. This limitation is a known issue when 

applying random forests-based prediction models (Tyralis et al., 2019; Hengl et al., 2018); it can be mitigated to some extent 

by using many extended time series for model training as new data becomes available. In this study, we did not find out-of-

sample issues to have a strong influence as the RF model reproduced extremes rather well. Adding additional sources, e.g. 

observed wind information, may also improve predictions (Johansson et al., 2018) or reanalysis (Hieronymus et al., 2019). 315 

However, these approaches were outside the scope of this technical note, focusing on exploring the limitations and advantages 

of only using neighbouring observations of sea level. If more complex methods can achieve additional accuracy, this is of 

course of great value, but it may also confuse the interpretations at times, which is not preferable. In preliminary tests, 

additional improvements from adding reanalysis and hindcast data did not appear to add enough value to warrant the decreased 

interpretability, but this is certainly a promising research area. 320 

Finally, this study focused on a limited area of the Swedish West Coast. The methodology is generally applicable but contingent 

on local conditions, and hence further research is needed to investigate if similar performance can be found when applying the 

proposed method to other areas with different ocean dynamics. 

5 Summary and conclusions 

This study demonstrates that sea level time series of daily maxima can be relatively successfully reconstructed from a 325 

neighbouring station using the LR or RF approaches using even very short overlapping intervals (10 years). As expected due 

to the short length of the overlap, ESLs are somewhat underestimated. The RF model is better able to capture the inherent non-

linearities and hence proves to be more accurate during those conditions. The corresponding absolute bias values are generally 

lower than those found from the LR. The best reconstructions are generally achieved for stations spatially closer to each other, 

though this can be partially offset using the RF, which is found to yield better results than the LR for stations spatially located 330 

further away from each other. We tested another method that we named “RF method with random sampling” in the case of 

Halmstad. When applied to reconstructed time series from a 10-years dataset, the method confirmed the results from a previous 

more physics-based study, reproducing RLs with a reasonable uncertainty range given by the 95th percentile ensemble spread. 

The method is easily applicable to other sites and can also be applied across regions as long as two neighbouring stations' sea-

level time series are available. Overall, using the RF method with random sampling to represent the uncertainty of extremes 335 

could be an advantage compared to many single-output machine learning predictions. 



 

15 

 

Code availability. The code used to generate the figures and tables can be acquired by contacting the first author 

(kevin.dubois@geo.uu.se). 

Data availability. The Hornbaek data used are available upon request. The data from the different Swedish stations are 

available at https://www.smhi.se/data/oceanografi/ladda-ner-oceanografiska-340 

observationer#param=sealevelrh2000,stations=core (last access: 14 October 2021). 

Author contributions. KD developed the code and conducted the analysis. KD prepared the manuscript with contributions from 

all co-authors. 

Competing interests. The authors declare that they have no conflict of interests. 

Acknowledgements. The work forms part of the project: Extreme events in the coastal zone – a multidisciplinary approach for 345 

better preparedness. 

Financial support. This research was funded by the Swedish Research Council FORMAS (Grant No. 2018-01784) and the 

Centre of Natural Hazards and Disaster Science (CNDS). AR and EN were also partially funded by the Research Council of 

Norway, MachineOcean project 303411. 

References 350 

Andersson, M.: Climate Adaptation by Managed Realignment. Future mean and extreme sea levels, SMHI, Report number: 

2021/912/9.5, 2021. 

Andrée, E., Su, J., Andreas, M., Larsen, D., Drews, M., Stendel, M., and Madsen, K. S.: The role of preconditioning for 

extreme storm surges in the western Baltic Sea, Nat. Hazards Earth Syst. Sci., 1–25, https://doi.org/10.5194/nhess-2022-149, 

2022. 355 

Bellinghausen, K., Hünicke, B., and Zorita, E.: Short-term prediction of extreme sea-level at the Baltic Sea coast by Random 

Forests, Nat. Hazards Earth Syst. Sci., https://doi.org/https://doi.org/10.5194/nhess-2023-21, 2023. 

Bernier, N. B., Thompson, K. R., Ou, J., and Ritchie, H.: Mapping the return periods of extreme sea levels: Allowing for short 

sea level records, seasonality, and climate change, Glob. Planet. Change, 57, 139–150, 

https://doi.org/10.1016/j.gloplacha.2006.11.027, 2007.  360 

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 

Brown, S., Nicholls, R. J., Goodwin, P., Haigh, I. D., Lincke, D., Vafeidis, A. T., and Hinkel, J.: Quantifying Land and People 

Exposed to Sea-Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300, Earth’s Futur., 

6, 583–600, https://doi.org/10.1002/2017EF000738, 2018. 



 

16 

 

Caldwell, P.: Tide Gauge Data Rescue, Proc. Mem. World Digit. age Digit. Preserv., 134–149, 365 

https://doi.org/10.1029/2008GL036185.1, 2012. 

Cid, A., Wahl, T., Chambers, D. P., and Muis, S.: Storm Surge Reconstruction and Return Water Level Estimation in Southeast 

Asia for the 20th Century, J. Geophys. Res. Ocean., 123, 437–451, https://doi.org/10.1002/2017JC013143, 2018. 

Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Technometrics, 44, 397–397, 

https://doi.org/10.1198/tech.2002.s73, 2001.  370 

Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 1–10, 

https://doi.org/10.1038/s41467-020-19160-7, 2020. 

Granata, F. and Di Nunno, F.: Artificial Intelligence models for prediction of the tide level in Venice, Stoch. Environ. Res. 

Risk Assess., 35, 2537–2548, https://doi.org/10.1007/s00477-021-02018-9, 2021.  

Hansen, L.: Technical Report 07-09 Hourly values of sea level observations from two stations in Denmark . Hornbæk 1890-375 

2005 and Gedser 1891-2005 Colophon, 1–12 pp., 2007. 

Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler, B.: Random forest as a generic framework for 

predictive modeling of spatial and spatio-temporal variables, PeerJ, 2018, https://doi.org/10.7717/peerj.5518, 2018. 

Hieronymus, M. and Kalén, O.: Sea-level rise projections for Sweden based on the new IPCC special report: The ocean and 

cryosphere in a changing climate, Ambio, 49, 1587–1600, https://doi.org/10.1007/s13280-019-01313-8, 2020. 380 

Hieronymus, M., Hieronymus, J., and Hieronymus, F.: On the application of machine learning techniques to regression 

problems in sea level studies, J. Atmos. Ocean. Technol., 36, 1889–1902, https://doi.org/10.1175/JTECH-D-19-0033.1, 2019. 

Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., 

Jevrejeva, S., and Pugh, J.: New data systems and products at the permanent service for mean sea level, J. Coast. Res., 29, 

493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013. 385 

Johansson, L.: Extremvattenstånd i Halmstad, SMHI, Report number: 2018/955/9.5,  2018.  

Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels based on a quasi-global tide-gauge data set, J. 

Geophys. Res. Ocean., 115, 1–15, https://doi.org/10.1029/2009JC005997, 2010. 

Merrifield, Mark; Holgate, Simon; Mitchum, Gary; Pérez, Begoña; Rickards, Lesley; Schöne, Tilo; Woodworth, Philip; 

Wöppelmann, G.: Global Sea-level Observing System (GLOSS) Implementation plan – 2012., 2012. 390 

Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Guo Larsén, X., 

Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., and Wasmund, N.: Natural Hazards 

and Extreme Events in the Baltic Sea region, Earth Syst. Dyn. Discuss., 1–80, https://doi.org/10.5194/esd-2021-13, 2021. 

SMHI: https://www.smhi.se/data/oceanografi/ladda-ner-oceanografiska-observationer#param=sealevelrh2000,stations=core, 

last access: 14 October 2021. 395 

Svansson, A.: Physical and chemical oceanography of the Skagerrak and the Kattegat, Report, Fish. Bd. Sweden, Inst. Mar. 

Res., 1975. 

https://www.smhi.se/data/oceanografi/ladda-ner-oceanografiska-observationer#param=sealevelrh2000,stations=core


 

17 

 

Tyralis, H., Papacharalampous, G., and Langousis, A.: A brief review of random forests for water scientists and practitioners 

and their recent history in water resources, Water (Switzerland), 11, https://doi.org/10.3390/w11050910, 2019. 

Vousdoukas, M. I., Mentaschi, L., Hinkel, J., Ward, P. J., Mongelli, I., Ciscar, J. C., and Feyen, L.: Economic motivation for 400 

raising coastal flood defenses in Europe, Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-020-15665-3, 2020. 

Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J., and Slangen, A. B. A.: Understanding extreme sea 

levels for broad-scale coastal impact and adaptation analysis, Nat. Commun., 8, 1–12, https://doi.org/10.1038/ncomms16075, 

2017.  

Woodworth, P. L., Menéndez, M., and Gehrels, W. R.: Evidence for Century-Timescale Acceleration in Mean Sea Levels and 405 

for Recent Changes in Extreme Sea Levels, Surv. Geophys., 32, 603–618, https://doi.org/10.1007/s10712-011-9112-8, 2011. 

Woodworth, P. L., Pouvreau, N., and Wöppelmann, G.: The gyre-scale circulation of the North Atlantic and sea level at Brest, 

Ocean Sci., 6, 185–190, https://doi.org/10.5194/os-6-185-2010, 2010. 


