Preprints
https://doi.org/10.5194/egusphere-2023-1010
https://doi.org/10.5194/egusphere-2023-1010
09 Jun 2023
 | 09 Jun 2023

Ambient methane monitoring at Hohenpeißenberg utilizing photoacoustic spectroscopy and cavity ring down spectroscopy

Max Müller, Stefan Weigl, Jennifer Müller-Williams, Matthias Lindauer, Thomas Rück, Simon Jobst, Rudolf Bierl, and Frank-Michael Matysik

Abstract. With an atmospheric concentration of approximately 2000 parts per billion (ppbV, 10−9) methane (CH4) is the second most abundant greenhouse gas (GHG) in the atmosphere after carbon dioxide (CO2). The task of long-term and spatially resolved GHG monitoring to verify whether climate policy actions are effective, is becoming more crucial as climate change progresses. In this paper we report the CH4 concentration readings of our photoacoustic (PA) sensor over a five day period at Hohenpeißenberg, Germany. As a reference device a calibrated cavity ringdown spectrometer Picarro G2301 from the meteorological observatory was employed. Trace gas measurements with photoacoustic instruments promise to provide low detection limits at comparably low costs. However, PA devices are often susceptible to cross-sensitivities related to environmental influences. The obtained results show that relaxation effects due to fluctuating environmental conditions, e.g. ambient humidity, are a non-negligible factor in PA sensor systems. Applying algorithm compensation techniques, which are capable of calculating the infl uence of relaxational effects on the photoacoustic signal, increase the accuracy of the photoacoustic sensor significantly. With an average relative deviation of 1.11 % from the G2301, the photoacoustic sensor shows good agreement with the reference instrument.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

25 Sep 2023
Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
Max Müller, Stefan Weigl, Jennifer Müller-Williams, Matthias Lindauer, Thomas Rück, Simon Jobst, Rudolf Bierl, and Frank-Michael Matysik
Atmos. Meas. Tech., 16, 4263–4270, https://doi.org/10.5194/amt-16-4263-2023,https://doi.org/10.5194/amt-16-4263-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Over a period of five days, a photoacoustic methane sensor was compared with a Picarro cavity...
Share