Preprints
https://doi.org/10.5194/egusphere-2023-101
https://doi.org/10.5194/egusphere-2023-101
27 Jan 2023
 | 27 Jan 2023

Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder

Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee

Abstract. A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This manuscript describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on > 17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, as well as lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv, where the ANN models tend to underfit and predict zero. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

02 Jun 2023
| Highlight paper
Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder
Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee
Atmos. Meas. Tech., 16, 2733–2751, https://doi.org/10.5194/amt-16-2733-2023,https://doi.org/10.5194/amt-16-2733-2023, 2023
Short summary Executive editor
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

The paper introduces a machine learning based retrieval algorithm for Aura/MLS, which could lead...
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder...
Share