
We’d like to thank the editor for handling our manuscript, as well as reviewer #1 for reading our 
manuscript and providing numerous helpful suggestions for improvement.  
 
We have carefully read through all the comments and questions and revised the manuscript 
accordingly. Please find our point-by-point response to reviewer #1 below. Here, the reviewer’s 
general and specific questions/comments are formatted to be left-aligned text in bold font. Our 
responses are indented and formatted in regular font.  
 
Here is a summary of the major changes in the revised manuscript:  

1) Table 2 reports ANN performance metrics for both the validation and independent test 
data set. 

2) We added additional information on the ranges for each hyperparameter and 
computational costs to section 3. 

3) We added explanations on why the temperature ANN model appears to be more complex 
than other models. 

4) 2) Tables 2 and 3 report the respective ANN performance metrics (RMSD, bias, and 
percentile differences) for each species in both their natural units (K, ppmv, ppbv), as 
well as percentages. 

5) We added a subsection on data quality assessment to section 3. 
6) We discuss areas in the global maps, where the ANN-NRT algorithm exhibits clear 

underestimations. 

 

 

 

 

 

 

 

 

 

 

 



The authors present a near real-time processor of Aura/MLS observations using a 
supervised neural network. The manuscript is easy to follow and shows that the processor 
has very good performance, very close to the operational processor. The new method 
presents a significant improvement compared to the previous near real-time processor 
based on a simplified optimal estimation method. I recommend the manuscript for 
publication, but I have minor comments that could be clarified by the authors. 
 
General comments 
 
1) I am impressed by the results overall, and more particularly with the ability of the model 
to capture the increase in H2O induced by the volcanic eruption, though the statistical 
weight of such events in the training dataset should be low. This illustrates the high 
potential of the model to capture special disturbances that occur over a restricted spatio-
temporal range. However, I found that such abnormal conditions are not sufficiently 
discussed in the manuscript. Indeed, these are scientifically the most interesting cases but 
have a low impact on the overall statistical evaluation. For example, in Figure 4b, the 
increase in H2O at 100 hPa over India and part of Southeast Asia is clearly underestimated 
with ANN-NRT. This should be discussed in the manuscript and the authors should 
mention if they have found other cases where significant discrepancies were seen. 
 
 

These maps were originally thought of as simple examples. However, the reviewer is 
correct that we mainly focused on regions were the ANN-NRT performed well compared 
to the OE-NRT algorithm. We agree that it is only fair to point out areas where the ANN 
underperforms. However, we need to emphasize that these maps are generated from MLS 
observations sampled on a single day, which requires an area-weighted interpolation of 
the MLS orbit track. Also note that the discrete color bar can exaggerate discrepancies.  
 
Regarding the H2O at 100 hPa example (Fig. 4b), the underestimations over India and 
Southeast Asia on that day are on the order of 0.5 ppmv and the OE-NRT algorithm 
seems to perform a little bit better. However, if we look at maps from two other days in 
that same week, shown in Figure 1 of this reply, we can see that ANN-NRT clearly 
outperforms OE-NRT in this region (as well as over Central America). While better than 
OE-NRT, the ANN again seems to underestimate the L2 results. Note that this is also 
indicated in Fig. 2h of the manuscript, where H2O > 5 ppmv seem to be underestimated 
during that month. These apparent systematic departures of ANN H2O from the L2 
training set in the presence of strong convection warrant further investigation (although it 
will be hard to improve the respective ANN model, due to the statistical nature of 
machine learning approaches). 
 
We added some additional discussion to the revised manuscript. Here, we emphasize 
regions where the ANN-NRT shows some larger discrepancies to the L2 results and 
mention possible reasons.  
 



 
 

Fig. 2: Comparisons of L2 O3 retrievals and ANN-NRT predictions at 100.00 hPa and 
21.54 hPa.  

 
First, we added this to the H2O discussion: 
“A notable exception is the area of increased H2O over India and parts of Southeast Asia, 
where the ANN-NRT underestimates the L2-retrieved concentrations. This region is 
characterized by strong and deep convection during the monsoon months that affects the 
sampled radiance profiles and may introduce uncertainties into the ANN model 
predictions. Maps of 100.00 hPa-H2O concentrations on other days during that week 
indicate that slight underestimations persist in this area; however, the ANN-NRT 
predictions generally are much closer to the L2 results than are the OE-NRT retrievals.” 
 
We also highlight an area with pronounced O3 underestimations: 
“The only obvious difference is the area of low concentrations over Antarctica, which is 
completely missed by the OE-NRT algorithm and is overestimated (in area) by ANN-
NRT. Note that profiles sampled in this region are affected by radiances that are reflected 
by the surface (see Fig. 7d in Werner et al., 2021 and the relevant discussion), which 
might impact the reliability of the ANN predictions.” 
 
Finally, we added this part to the conclusions: 
“Global maps of predicted H2O and O3 concentrations indicate that model performance 
may be affected by the presence of strong, deep convection, as well as by strong surface 
reflections over Antarctica. While the respective predictions agree better with the L2 
retrievals compared to the OE-NRT results, more analysis is needed to explore potential 
improvements to the ANN setups.” 

  



Such improvements might be achieved by increasing the sample importance for cloudy 
profiles (i.e., telling the model to emphasize these profiles during training) or by adding 
additional features that indicate cloudiness.  

 
2) More generally, the authors do not show results for the whole test dataset (5% of 17 
years corresponds to almost 1 year), in particular winter time which is strongly disturbed 
in the northern hemisphere. Is there a seasonal pattern in the results? Authors should 
clarify why the test data are well suited for describing the capability of the model and the 
limitations of such a choice (that could further be investigated in future studies). For 
instance, I would personally have used 2 entire years with very different conditions (e.g., 
SSW strength or QBO phase) to test the models.   
 

We should have been clearer about the purpose of the independent test data set. The 
examples shown in the results section were not drawn from the test data set, but instead 
are new predictions made after each model was finalized. Note that the temperature 
model was trained on data sampled between 01/01/2005 and 05/31/2021. Meanwhile, 
Figs. 2–3 show comparisons between L2 retrievals and ANN predictions for July 2021. 
 
The purpose of the independent test data set, and the validation data set to a certain 
extent, is indeed to evaluate model performance and test the ability of the model to 
generalize. For the temperature model, we have about 5 years and 1 year worth of 
profiles in the validation and test data set, i.e., about 4.8 and 1 million profiles. However, 
they do not comprise a continuous 5-year period or a single year of observations. Instead, 
these profiles are picked randomly from the full distribution and therefore cover all years, 
seasons, and geographical regions. If there is a close agreement between the performance 
metrics for the validation and test data set the model is able to generalize well for 
previously unseen data. Large discrepancies indicate poor model performance and 
unreliable predictions.  
 
The example data in Figs. 2–4, as well as the figures in the appendix, are simply 
examples to illustrate performance going forward, i.e., after the models have been trained 
and evaluated. For example, it would not be possible to create maps like those in Fig. 4 of 
the manuscript from the test data set alone, because (statistically) only 5% of profiles of 
each individual day (~175) are part of the test data set (i.e., >5200 profiles from each 
month since 01/01/2005). Similarly, the analysis in Fig. 5 is based on a fixed independent 
data set. They are not used for model evaluation, although all predictions from now on 
could technically be considered an extension of the original test data set (i.e., an ever-
growing amount of previously unseen profiles). 
 
Note that we are constantly monitoring ANN-NRT performance. Fig. 2 of this reply 
shows an example of L2 O3 retrievals vs ANN-NRT predictions from 04/09/2023 for two 
pressure levels. Similar to the metrics in the test data set, correlation coefficients are high 
with R>0.99 and very low biases <0.01 ppmv. 

 



 
 
Fig. 2: Comparisons of L2 O3 retrievals and ANN-NRT predictions at 100.00 hPa and 
21.54 hPa. 

 
We made a several changes to the revised manuscript to make these points clearer:  
1) We include the metrics for the validation data set in Table 2 and directly contrast 

them with the metrics for the test data set. They are very similar. 
2) We added the following description to the manuscript text: 

“These scores were derived by comparing the ANN-NRT predictions with the 
respective MLS L2 results for all MAFs in both the validation and an independent test 
data set. The distinction between the two is important. Following the discussion in 
Ripley (1996) and Russel and Norvig (2009), the validation data is used for 
hyperparameter tuning and to prevent overfitting during model training. To truly 
evaluate the performance of a trained model, a completely independent test data set is 
necessary. However, the performance scores for the validation and test data set should 
be similar and large discrepancies are an indication that the trained model does not 
generalize well (i.e., the model performs worse for previously unseen data). Note that 
of the ~ 3500 daily profiles MLS observed since 01/01/2005, ~ 875 and ~175 
randomly selected samples are included in the validation and test data set, 
respectively.“ 

3) We’ve added the following statement at the beginning of section 4: 
“This section presents comparisons between MLS L2 profile retrievals and the 
respective OE-NRT and ANN-NRT predictions. These observations were made after 
the respective ANN-models were developed, trained, and evaluated and serve as 
examples of model performance going forward.” 

 
3) Regarding the vertical resolution of profiles predicted with ANN-NRT. This issue is not 
addressed in the manuscript and could be clarified. If I understand the NN setting 
correctly, the vertical resolution of the predicted profile is the same as that of the level 2 
operational product (here I am referring to the resolution derived from the operational 
averaging kernels and not the retrieval levels spacing). Am I right? This could be clarified. 
 



ANN-NRT retrievals are trained to duplicate the L2 operational OE retrievals, and thus 
have vertical and horizontal resolution no better than that inherent in the OE retrievals’ 
averaging kernels.  However, the production OE retrieval uses multiple, overlapping 
scans of the atmosphere to “tomographically” retrieve a set of adjacent profiles, while the 
ANN-NRT relies upon radiances only from the nearest radiometric scan of the 
atmosphere to retrieve a given profile.  This difference between 2D and 1D radiance 
inputs would be expected to have significant impact on horizontal (along-track) 
resolution and more subtle impacts on vertical resolution, but as ANN-NRT retrievals do 
not produce averaging kernels, it is difficult to make quantitative comparisons.  This is a 
topic for further research beyond the scope of this paper. 
  
The ANN-NRT models perform a mapping between (1) The MLS L1B brightness 
temperatures (sampled at 125 minor frames, or scan levels) and the operational L2 data 
products at their respective 37 or 55 retrieval levels (depending on the species). The 
models do not approximate any parts of the forward model or retrieval algorithm. 
 
In other words, in the training phase, the temperature ANN learns the relationship 
between MLS brightness temperatures sampled in different bands/channels/minor frames 
and the operationally retrieved T at 100 hPa, 82.5 hPa, and 68.1 hPa, as well as the 
respective retrieval levels below and above. In the prediction phase it subsequently 
provides an estimate of T at these exact levels, thus providing an estimate of the eventual 
operational L2 profile retrieval. 
 
We’ve added a short summary at the beginning of section 3 of the revised manuscript: 
“This section described the theory, training process, settings, performance evaluation, and 
data quality assessment of the updated, ANN-based NRT algorithm. The goal is to train 
ANN models on all valid MLS L2 standard product retrievals over 01/01/2005–
04/30/2022 and their associated, nearest brightness temperature profiles. Since the MLS 
L2 standard products are used as labels (i.e., ``truth'') during training, the best-case output 
of each ANN is a computationally-inexpensive, high-fidelity preview of the L2 profiles.” 
 
We’ve also added the following clarification to section 3.1: 
“Here, the labels are values from individual profiles of a specific MLS retrieved L2 
atmospheric constituent. Therefore, the size of k is determined by the number of retrieval 
levels of the respective MLS L2 product.” 

 
4) For low SNR cases, the authors mentioned that the NN tends to smooth the noise 
compared to the operational product. Is this effect could be related to a degradation of the 
vertical resolution similar to the regularization effect in the OE method? 
 

“Smoothing the noise” can be thought as more of a symptom than anything the ANNs 
actively do. What actually happens is that the models fail to establish a successful 
mapping between the features and labels, i.e., the model cannot determine any 
meaningful relationship between the input and output. 
 



One can test this easily with a few simple examples. In a first test, we trained a model to 
predict a sine curve pattern, ie., the features are angles between 0 to 360 degrees and the 
labels are the sine of the features. Note that, since this is just a demonstration, we did not 
tune any of the hyperparameters and instead used some default settings of one hidden 
layer, 1 neuron, a “relu” activation function, and L2 regularization with a parameter of 
5e-4; the split between training, validation, and test data is 90/10/10%.  
 
Figure 1a of this reply show the results of this test. The test data (orange dots) nicely 
follow the original sine curve (blue dots) and the correlation coefficient is 1.00. If we set 
all input features to 0, the model will fail to establish a successful mapping between the 
features and labels. This is illustrated in Fig. 1b of this reply. Here, the model basically 
predicts 0 for all angles, i.e., the average value. Some slight deviations from 0 can be 
observed occasionally, which can likely be attributed to (i) insufficient regularization in 
the model, and/or (ii) imbalanced training and test data (i.e., they draw from slightly 
different distributions). 
 
A second experiment simulates conditions closer to noisy MLS L2 retrievals, shown in 
Fig. 1c of this reply. Here, the features are again values between 0 and 360 degrees, but 
we set the labels to random values between 0 to 1, with an average of 0.5. Again, the 
model will fail to establish a successful mapping between features and labels and will 
simply predict the average value at all times. This is shown in Fig. 1d of this reply.  
 
Note that this behavior is similar to other machine learning architectures, like GBDT, 
where the model attempts to predict residuals from an average value. 

 

 
Fig. 3: Demonstration of ANN predictions for ill-defined problems. 
 
We slightly tweaked a statement in the abstract: 
“…, where the ANN models fail to establish a functional relationship and tend to predict 
zero.” 

 



Specific comments 
 
Line 87: “n” is already used to define the number of input features. It would be clearer if 
another letter is used for the number of neurons per hidden layer.   
 

Thanks for noticing. We switched the index to “j” (a common letter to describe an index) 
and the total number to a capital “J”, both in the manuscript text and in Table 1. 

 
Line 93: is the levels of the predicted profile the same as the number of levels of the 
operational product? 
 

This is correct. The labels of each ANN model are the respective operational retrieval 
products. Therefore, the predicted profiles exist at the exact same vertical levels as the 
MLS L2 products.  
 
We’ve added a short summary at the beginning of section 3 of the revised manuscript: 
“This section described the theory, training process, settings, performance evaluation, and 
data quality assessment of the updated, ANN-based NRT algorithm. The goal is to train 
ANN models on all valid MLS L2 standard product retrievals over 01/01/2005–
04/30/2022 and their associated, nearest brightness temperature profiles. Since the MLS 
L2 standard products are used as labels (i.e., ``truth'') during training, the best-case output 
of each ANN is a computationally-inexpensive, high-fidelity preview of the L2 profiles.” 
 
We’ve also added the following clarification to section 3.1: 
“Here, the labels are values from individual profiles of a specific MLS retrieved L2 
atmospheric constituent. Therefore, the size of k is determined by the number of retrieval 
levels of the respective MLS L2 product.” 
 

Table 1: I understand that the hyperparameters are defined by a set of tests but the 
differences between the models could be discussed. Why the number of hidden neurons is 
much smaller for the H2O model than for T and O3? Why is the tanh activation preferred 
over Relu for some species? (It is considered that Relu make the training more efficient) 
 

These discrepancies can be explained by the following reasons: 
1) Development on the ANN-NRT models started because we were unsatisfied with the 

performance of the previous OE-NRT temperature results. Therefore, we initially 
only intended to replace the temperature product and to continue using OE-NRT for 
all other species. As a result, we almost overengineered that specific model and did 
not mind the immense computational costs associated with almost >5,000 neurons per 
layer. We also were content with increasing the mini-batch size to 8192, even though 
this required a significant amount of memory. We only cared about developing the 
very best model possible. 

2) We made a mistake in Table 1; the O3 model only has 400 neurons (as well as a 
“tanh” activation function). 

3) Regarding the number of neurons: we varied those between 100 and a predefined 
maximum, in increments of 100. We set that maximum to !

"
∙	(the number of features 



+ the number of labels), which is a widely-used (somewhat empirical) threshold. 
Increasing the number of neurons after that point usually makes very little sense; our 
experience confirms these findings. 

 
Frankly, neither the large number of neurons or the large mini-batch size for the 
temperature model are necessary. In fact, as long as the number of neurons is ≥400 per 
layer, the overall performance metrics change very little (e.g., ∆𝑅 < 0.01). Once we 
decided to also train models for the other NRT species, we decided to keep the mini-
batch size lower to ease the computational costs regarding the amount of memory, as we 
found little to no improvement for the performance metrics. However, we decided to 
keep the already trained temperature model the way it was. 
 
Regarding the use of the “tanh” vs “relu” activation functions: We found that for almost 
all models the performance was determined by the combination of activation function and 
normalization. Apart from the O3 model, the use of “relu” only produced higher 
performance scores when combined with Gaussian noise layers. Whenever L2 
regularization was associated with higher performance (or no regularization was 
preferrable, like for the CO models) it was in combination with “tanh” layers. Note that 
we are not saying this is a universal characteristic, but something unique to the MLS 
NRT setup. Similar to our findings for the temperature model: differences in the 
performance metrics between the different model setups were very small as long as we 
had a sufficient number of neurons per hidden layer. However, the reviewer is correct: 
the models with “relu” activation functions converged a lot faster than the “tanh” models. 
This is one of the large benefits of the “relu” activation function. Of course, there are also 
some disadvantages, like the fact that neurons with negative values get eliminated. 
 
We added the considered ranges of each hyperparameter to section 3.1: 

“We considered the following ranges and settings: JHL = [1, 2], JN = [100, 200, · · ·, 
2/3·(n+k)] per hidden layer, AF=[“relu”, “tanh”], LRP=[n/a, 1e−6, 5e−6, 1e−5, · · · , 
1e−1], GNS=[n/a, 1e−3, 5e−3, 1e−2, · · · , 1], and MBS=[32, 64, · · · , 8192]. 

We also added information on the computational costs of the training procedure: 
“The computational costs associated with the training procedure of each ANN-NRT 
model, while dependent on the respective hyperparameters and size of the m x n input 
matrix, are generally as follows: it takes about one month to develop and train each ANN, 
using 12 CPUs and requiring ~ 100 GB of memory.” 
 
Finally, we added an explanation on why the temperature model is so much more 
complex: 
“Note that the model setups for T, CO, and SO2 differ from those of the other species. 
The T model is considerably more complex with comparatively high values of JHL=5,078 
and MBS=8,192. The ANN-based estimator for temperature was developed before those 
for the other products, with less regard for computational cost than was present in the 
subsequent development.  The computationally more expensive temperature model is 



“overbuilt”, but had already been trained so was used in this version of the NRT 
products.”   

 
Line188/Table 3: Are the scores calculated for the same periods as Figure 3?   
 

Yes, these metrics were calculated for the same time period as in Fig. 2, 3, A1, and A2. 
We clarified this in the revised manuscript: 
“A summary of average performance metrics is given in Table 3, derived for the same 
time period as is used in Figs. 2–3 and Figs. A1–A2. Specifically, the presented metrics 
are: R, the average absolute RMSD, and average absolute bias for each species and the 
two NRT algorithms, as well as the averages of the 1st and 99th percentile of the 
differences to L2 (as a proxy for the minimum and maximum deviations).” 

 
Line207: “Here the ANN … , and the results are close to L2 data”: there is a clear 
underestimation of the H2O vmr over india and East-Asia. This issue could be mentioned 
and what could be the reason? 
 

- Yes, these are random. 
 
Line 219/Line 241: Would it be possible to complete a small training dataset with simulated 
data? 
 

Yes, this could be done. Testing performance from a model that was trained on simulated 
data would be an interesting analysis. It would prove the feasibility of providing NRT 
products for a completely new instrument, for which no previous data record exists. Since 
machine learning approaches are statistical in nature, using a wide array of synthetic 
composition profiles and radiance data should in theory provide reliable predictions. Such 
an approach is not dissimilar to calculating look-up tables of synthetic observations for a 
wide range of viewing geometries and cloud variables in MODIS-like cloud property 
retrievals. As long as the radiances accurately describe the actual (noisy) observations 
and the set of composition profiles cover a wide array of possible atmospheric states, that 
approach should yield reliable results. Again, a retrieval approach based on look-up 
tables is very similar. 
 
We think that such an analysis goes far beyond the scope of our paper and would be best 
suited for a separate study. For the MLS NRT retrieval we fortunately did not require 
synthetic data sets due to the large MLS data record.  
 
Some preliminary thoughts on such a new study are: 
1) The synthetic profiles need to be representative of actually observed profiles, and 

should cover as much of the full dynamic range as possible. We would expect to need 
an order of magnitude of 100,000 profiles to develop a reliable model. 

2) For each of these profiles we need to simulate the relevant MLS radiance 
observations, which is computationally expensive. 

3) ANNs might not be the ideal machine learning architecture for such an application. 
They tend to learn a specific problem very well, such as measurement uncertainties 



and idiosyncrasies in the applied forward model and inversion algorithms, which 
result in uncertainties in the retrieved composition profiles. Synthetic data might look 
just different enough compared to actual measurements/retrievals that the ANN 
predictions become unreliable. Other architectures, such as Gaussian Process Models 
or Gradient Boosted Decision Trees, are more robust with regard to noisy data. 

We think this topic is well worth exploring in a separate study, but that it requires a lot of 
additional efforts and considerations. 
 
However, we ran a small test to, at the very least, confirm the feasibility of such an 
approach. Instead of creating a large set of possible atmospheric states and running a 
forward model on each to create synthetic MLS radiances, we used simulated radiances 
for day 51 in 1996 as input for our ANN-NRT temperature model. That data set is part of 
our testing procedure for the MLS retrieval algorithm. Note that the ANN-NRT models 
were trained on the relationship between a set of noisy MLS radiances and noisy MLS L2 
retrievals. Applying these models on noise-free radiances and climatological temperature 
profiles introduces considerable uncertainties. 
 
The results are shown in Fig. 4 of this reply. Panels a and b show scatter plots of 
predicted vs modelled temperatures at 100.00 hPa and 21.54 hPa, respectively. While 
model performance is worse compared to our analysis for actually observed MLS 
radiances and retrieved temperature profiles, it still performs reasonably well. Correlation 
coefficients are 0.95 (100.00 hPa) and 0.93 (21.54 hPa). The RMSD>2 K is in the range 
of the results in table 3 of the manuscript. These metrics are also worse than the ones 
based upon a single year of MLS observations (see Fig. 5 of the manuscript). 
 

 
Fig. 4: Model performance for simulated temperature profiles and radiances. 

 
Line 244: I don’t understand the sentence “The previous version…”. Do the authors mean: 
The previous version of MLS NRT data products (OE-NRT, Lambert et al., 2022) is 
replaced with predictions from an artificial neural network (ANN). 
 

This is indeed confusing. The ANN approach was developed and implemented in phases, 
starting with the temperature ANN model and only later extended to cover all other NRT 
species as well. An ANN-based model has been used operationally for NRT temperature 
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since the end of 2021, as documented in the previous version of the MLS NRT user 
guide. 
 
However, we don’t think this distinction is necessary and will only confuse potential 
readers. We therefore simplified the first paragraph of the conclusions in the revised 
manuscript to: 
“The previous version of MLS NRT data products (OE-NRT) is replaced with predictions 
from an artificial neural network (ANN). This manuscript describes the setup and 
evaluation of ANN models for all MLS NRT species. Starting in January 2023, all MLS 
NRT data products are based on this new approach (ANN-NRT).” 

 

 



We’d like to thank the editor for handling our manuscript, as well as reviewer #2 for reading our 
manuscript and providing numerous helpful suggestions for improvement.  
 
We have carefully read through all the comments and questions and revised the manuscript 
accordingly. Please find our point-by-point response to reviewer #2 below. Here, the reviewer’s 
general and specific questions/comments are formatted to be left-aligned text in bold font. Our 
responses are indented and formatted in regular font.  
 
Here is a summary of the major changes in the revised manuscript:  

1) Table 2 reports ANN performance metrics for both the validation and independent test 
data set. 

2) We added additional information on the ranges for each hyperparameter and 
computational costs to section 3. 

3) We added explanations on why the temperature ANN model appears to be more complex 
than other models. 

4) 2) Tables 2 and 3 report the respective ANN performance metrics (RMSD, bias, and 
percentile differences) for each species in both their natural units (K, ppmv, ppbv), as 
well as percentages. 

5) We added a subsection on data quality assessment to section 3. 
6) We discuss areas in the global maps, where the ANN-NRT algorithm exhibits clear 

underestimations. 

 

 

 

 

 

 

 

 

 

 

 

 



General comments 
 
This paper presents new near real-time products of the Aura Microwave Limb Sounder 
(MLS) using artificial neural networks (ANN-NRT). The ANN-NRT show good 
performance and demonstrates the potential of applying machine learning to generate 
NRT products. The paper is clearly written and the study is well explained. I recommend 
the manuscript for publication, but I have some minor comments. 
 
(1)  Global maps show ANN-NRT is better than OE-NRT, but more discussion should be 
given to the special area of that ANN overestimates or underestimates. 
 

These maps were originally thought of as simple examples. However, the reviewer is 
correct that we mainly focused on regions were the ANN-NRT performed well compared 
to the OE-NRT algorithm. We agree that it is only fair to point out areas where the ANN 
underperforms. However, we need to emphasize that these maps are generated from MLS 
observations sampled on a single day, which requires an area-weighted interpolation of 
the MLS orbit track. Also note that the discrete color bar can exaggerate discrepancies.  
 
We added some additional discussion to the revised manuscript. Here, we emphasize 
regions where the ANN-NRT shows some larger discrepancies to the L2 results and 
mention possible reasons. First, we added this to the H2O discussion: 

 
“A notable exception is the area of increased H2O over India and parts of Southeast Asia, 
where the ANN-NRT underestimates the L2-retrieved concentrations. This region is 
characterized by strong and deep convection during the monsoon months that affects the 
sampled radiance profiles and may introduce uncertainties into the ANN model 
predictions. Maps of 100.00 hPa-H2O concentrations on other days during that week 
indicate that slight underestimations persist in this area; however, the ANN-NRT 
predictions generally are much closer to the L2 results than are the OE-NRT retrievals.” 
 
We also highlight an area with pronounced O3 underestimations: 
“The only obvious difference is the area of low concentrations over Antarctica, which is 
completely missed by the OE-NRT algorithm and is overestimated (in area) by ANN-
NRT. Note that profiles sampled in this region are affected by radiances that are reflected 
by the surface (see Fig. 7d in Werner et al., 2021 and the relevant discussion), which 
might impact the reliability of the ANN predictions.” 
 
Finally, we added this part to the conclusions: 
“Global maps of predicted H2O and O3 concentrations indicate that model performance 
may be affected by the presence of strong, deep convection, as well as by strong surface 
reflections over Antarctica. While the respective predictions agree better with the L2 
retrievals compared to the OE-NRT results, more analysis is needed to explore potential 
improvements to the ANN setups.” 

  



Such improvements might be achieved by increasing the sample importance for cloudy 
profiles (i.e., telling the model to emphasize these profiles during training) or by adding 
additional features that indicate cloudiness.  

 
(2)  For performance evaluation of T model, I think it is more intuitive to use unit K rather 
than relative values. At least it should be described in the paper. 
 

Tables 2 and 3 in the revised manuscript now summarize both Kelvin/ppmv/ppbv, as well 
as percentages. This not only provides more intuitive numbers for the temperature model, 
but also puts some of the large percentages for SO2, HNO3, and N2O into perspective 
(i.e., there are very low concentrations at certain levels). 

 
Specific comments 
Line 96: I know brightness temperatures sampled over 2005–2022 are very large. However, 
it is better to describe the exact amount of input features for training, validation, and test 
data. 
 

At that point in the manuscript, we wanted to give a very general overview of the theory 
and necessary steps to setup and train ANN models. Moreover, the exact number of 
samples varies from species to species due to the (i) differently sized data records, and 
(ii) number of successful MLS level 2 profile retrievals. 
 
However, we agree that this is an important fact to cover in the revised manuscript. 
Therefore, we added the respective number of samples to table 1 and changed the 
relevant sentence in the manuscript text to: “It also provides details on the features that 
make up the input matrix for each ANN-NRT model, namely the start and end dates that 
define the training data record for each model, the number of total samples in that data 
record (determined by the number of successful profile retrievals), and the respective 
MLS bands, channels, and MIFs.” 

 
Table 1: The number of neurons of T and O3 are much larger than other products, is it 
necessary? Why choose so many neurons instead of adding hidden layers? The MBS of T 
(i.e. 8192) is much larger than the others (i.e. 32), it should be discussed. 
 
 These discrepancies can be explained by the following reasons: 

1) Development on the ANN-NRT models started because we were unsatisfied with the 
performance of the previous OE-NRT temperature results. Therefore, we initially 
only intended to replace the temperature product and to continue using OE-NRT for 
all other species. As a result, we almost overengineered that specific model and did 
not mind the immense computational costs associated with almost >5,000 neurons per 
layer. We also were content with increasing the mini-batch size to 8192, even though 
this required a significant amount of memory. We only cared about developing the 
very best model possible. 

2) We made a mistake in Table 1; the O3 model only has 400 neurons. 
3) Regarding the number of neurons: we varied those between 100 and a predefined 

maximum, in increments of 100. We set that maximum to !
"
∙	(the number of features 



+ the number of labels), which is a widely-used (somewhat empirical) threshold. 
Increasing the number of neurons after that point usually makes very little sense; our 
experience confirms these findings. 

 
Frankly, neither the large number of neurons or the large mini-batch size for the 
temperature model are necessary. In fact, as long as the number of neurons is ≥400 per 
layer, the overall performance metrics change very little (e.g., ∆𝑅 < 0.01). Once we 
decided to also train models for the other NRT species, we decided to keep the mini-
batch size lower to ease the computational costs regarding the amount of memory, as we 
found little to no improvement for the performance metrics. However, we decided to 
keep the already trained temperature model the way it was. 
 
We added the considered ranges of each hyperparameter to section 3.1: 

“We considered the following ranges and settings: JHL = [1, 2], JN = [100, 200, · · ·, 
2/3·(n+k)] per hidden layer, AF=[“relu”, “tanh”], LRP=[n/a, 1e−6, 5e−6, 1e−5, · · · , 
1e−1], GNS=[n/a, 1e−3, 5e−3, 1e−2, · · · , 1], and MBS=[32, 64, · · · , 8192]. 

We also added information on the computational costs of the training procedure: 
“The computational costs associated with the training procedure of each ANN-NRT 
model, while dependent on the respective hyperparameters and size of the m x n input 
matrix, are generally as follows: it takes about one month to develop and train each ANN, 
using 12 CPUs and requiring ~ 100 GB of memory.” 
 
Finally, we added an explanation on why the temperature model is so much more 
complex: 
“Note that the model setups for T, CO, and SO2 differ from those of the other species. 
The T model is considerably more complex with comparatively high values of JHL=5,078 
and MBS=8,192. The ANN-based estimator for temperature was developed before those 
for the other products, with less regard for computational cost than was present in the 
subsequent development.  The computationally more expensive temperature model is 
“overbuilt”, but had already been trained so was used in this version of the NRT 
products.”   
 

Line 189: The SO2 statistics in Table 3 are based on the observations which were also 
included in training data set. So, the comparison of OE and ANN doesn't make much sense. 
Is there no other data for comparison? 
 

We wanted to present statistics for the data covered in Figs. 2-3 and to present model 
performance for enhanced concentrations due to volcanic activity. However, we agree 
that the evaluation of the SO2 model performance is problematic due to the inclusion of 
trained data. We acknowledge that fact in the manuscript when we say: 
“Of special note is the ANN-NRT setup for sulphur dioxide (SO2). Volcanic eruptions 
are the primary source of stratospheric SO2. As a result, we decided to train the SO2 ANN 
model on MLS observations around major volcanic eruptions, namely those of Kasatochi, 
Calbuco, Sarychev, Nabro, Raikoke, and Hunga Tonga-Hunga Ha’apai (e.g., Pumphrey 



et al., 2015; Millán et al., 2022). While ANN-NRT performs well in reproducing elevated 
SO2 concentrations associated with the Hunga Tonga-Hunga Ha’apai eruption, the 
training data is limited and the model may suffer from overfitting (i.e., learning specific 
characteristics of known eruptions well to the detriment of generalization).” 

 
We agree that adding more information about model performance for actually unseen 
data are necessary. Therefore, we added performance metrics for predictions in May 2022 
to table 3, as well as the following sentence in the manuscript text:  
“Note that two sets of SO2 statistics are shown: one set based on MLS observations in 
January 2022, which are affected by the Hunga Tonga-Hunga Ha'apai volcanic eruption 
and were included in training data set, and a second set based on samples in May 2022 
with no volcanic influence.” 
 
We also developed a second SO2 ANN-NRT model, where the training data set is based 
on all MLS observations over 01/01/2005–04/30/2022. We included performance metrics 
for the test data set in table 2, as well as the following discussion in the revised 
manuscript: 
“As mentioned in section 2, stratospheric L2 retrievals in the absence of elevated levels 
of SO2 can be considered noise, and comparisons between L2 and ANN-NRT results are 
difficult (R<0.26 and bias >11%). If the training data set is increased to include all MLS 
retrievals between 01/01/2005 and 04/30/2022, instead of just focusing on periods of 
volcanic activity, the associated correlation coefficients and biases slightly improve to 
0.37 and <7%, indicating a better ability to predict noise. However, further analysis 
indicates that this model performs slightly worse for profiles containing elevated SO2 
concentrations; correlation coefficients for such profiles in the test data set are decreased 
by about 0.05 (R=0.52 compared to R=0.57), while the RMSD increases by about 0.31 
ppbv (5.72 ppbv compared to 5.41 ppbv). Since the main objective of the SO2 NRT is to 
detect volcanic activity, we decided to employ the model trained on the reduced (volcanic 
only) data set.” 

 
Line 237: All metrics get better with the increasing data except the absolute bias in Fig. 
5(c), it should be discussed. 
 

Unfortunately, after closely analyzing the different predictions and metrics, we frankly do 
not have a good explanation on why the bias does not decrease with increasing training 
data set size. 
 
One possible explanation is that the observed biases between predictions are very small, 
especially compared to other species. Looking at the new table 3, the mean bias for the 
full data set is 0.16 K (<0.1%). The bias range for the smaller training data sets is 0.11-
0.13 K, which is very similar. Keep in mind that these are absolute biases, so the true 
average is even smaller at 0.05–0.06 K. At this point, the biases for all ANN-NRT 
models are close to being negligible and increasing the size of the training data set does 
not further reduce the bias. 
 



Note that the average of the 99th percentile of the difference between the L2 retrievals and 
ANN predictions decreases with an increase in training data size; illustrated in Fig. 1 of 
this reply. We find similar results for the 1st percentile of the difference. 
 

 
Fig. 1: (a) Correlation coefficient as a function of size of the training data set. (b) Similar 
to (a), but for the average of the 99th percentile of the difference between L2 and 
predicted temperatures. (c) Similar to (b), but shown as a percentage. 

 
 
We unfortunately do not have another explanation; all predictions look very similar. Even 
though this lack of an explanation is rather unsatisfactory, we added some extra 
discussion about the small biases and the 99th percentile differences to the revised 
manuscript: 
“A very small increase in the averaged absolute biases for the T models is observed. 
However, these absolute biases are in the range of 0.11-0.16 K (0.05-0.06 K if both 
positive and negative biases are averaged) and can be considered negligible. Note that 
similar analysis for the 1st and 99th percentile of the difference between MLS L2 
retrievals and each ANN-NRT model prediction shows a monotonically decreasing 
behavior with increasing training data size.” 
  



We’d like to thank the editor for handling our manuscript, as well as reviewer #3 for reading our 
manuscript and providing numerous helpful suggestions for improvement.  
 
We have carefully read through all the comments and questions and revised the manuscript 
accordingly. Please find our point-by-point response to reviewer #3 below. Here, the reviewer’s 
general and specific questions/comments are formatted to be left-aligned text in bold font. Our 
responses are indented and formatted in regular font.  
 
Here is a summary of the major changes in the revised manuscript:  

1) Table 2 reports ANN performance metrics for both the validation and independent test 
data set. 

2) We added additional information on the ranges for each hyperparameter and 
computational costs to section 3. 

3) We added explanations on why the temperature ANN model appears to be more complex 
than other models. 

4) 2) Tables 2 and 3 report the respective ANN performance metrics (RMSD, bias, and 
percentile differences) for each species in both their natural units (K, ppmv, ppbv), as 
well as percentages. 

5) We added a subsection on data quality assessment to section 3. 
6) We discuss areas in the global maps, where the ANN-NRT algorithm exhibits clear 

underestimations. 

 

 

 

 

 

 

 

 

 

 

 

 



GENERAL COMMENTS 
================= 
The paper describes the application of an artifical neural network (ANN) to the retrieval of 
trace gas profiles from the MLS instrument. ANN have been applied recently to different 
problems, partially with large success. 
 
Here, the intent is to replace a primarily fast but comparatively inaccurate near-real-time 
retrieval with something both faster and more accurate. The presented results indicate that 
the approach has succeeded on both ends. 
 
The study is on the point, well described, and executed. The topic fits the journal. I 
recommend publication. 
 
  
SPECIFIC COMMENTS 
================= 
lines 80ff: The underlying software seems to be readily available. Could the training model 
employed here be made available as well? This might be applicable for similar tasks and/or 
other limb sounders. 
 

The referenced “Keras” and “Tensorflow” software packages are open source tools to set 
up machine learning platforms. Internally, we use specifically developed Python routines 
to access those open source tools and to streamline the training process. We are currently 
in the process of preparing a Python package that could be hosted on Github and made 
available to the public. However, note that these are simply wrappers to simplify access 
to “Keras” and “Tensorflow. 
 
Following the steps outlined in the Keras user manual 
(https://keras.io/guides/sequential_model/) to set up a feedforward neural network and 
using the settings summarized in Section 3.2 and Table 1 of the manuscript is all it takes 
to set up the exact models described in the manuscript. However, it is highly unlikely that 
these exact models produce reliable results for different tasks or instruments. Instead, the 
correct settings need to be determined individually for each application and data set; 
these settings are probably very different from the ones used here. 
 
Please reach out if you want help with setting up similar models for different tasks, we 
are happy to help.  (…so long as we aren’t forbidden to do so by US export controls.) 

 
lines 130ff: A general problem with trained models is how the model copes with unexpected 
situations. Here, you describe how you adapted the training data set to cope with volcanic 
activity. How important was this for the performance and how likely is it that, e.g. the 
Ozone hole would have been missed? 
 

This problem (performance for situations not seen before) is indeed inherent in all 
supervised machine-learning applications, not just for the SO2 model described in the 
manuscript. However, the MLS SO2 profile retrievals are somewhat special (compared to 



the other species) as they are basically noise at all levels in the absence of volcanic 
activity. An example of that is presented in Fig. 1 of this reply, which shows joint 
histograms of the operational L2 SO2 concentrations and those provided by OE-NRT, 
ANN-NRT trained with the reduced data set, and ANN-NRT trained with all data over 
01/01/2005–04/30/2022. Joint histograms are shown for two pressure levels; data is from 
MLS observations in May 2022. 

 

 
Fig. 1: Joint histograms of L2 SO2 and three NRT models for two pressure levels each.  
 
The ANN-NRT that was trained with all profiles performs better in predicting the noise at 
each pressure level than the model trained with the reduced data set. This is simply due to 
the fact that the former was trained on more noisy data. Both ANN-based models perform 
better than OE-NRT. Note the slight tilt of the ANN-based distributions in relation to the 
1:1 line, which illustrates the tendency of the ANNs to predict 0 ppmv.  
 
Both the correlation coefficient and bias for an independent test data set improve when 
using the ANN model that was trained on all data over 01/01/2005–04/30/2022. Average 
R=0.37 and average bias =5.73%, compared to 0.26 and 7.26%, respectively. However, 
this only illustrates that the model can predict noise better. We compared model 
performance for profiles with elevated values (from the independent test data set) and 
found that the model trained on the limited data set performs better (correlation 
coefficients of 0.57 vs 0.52; RMSDs of 5.41 ppbv vs 5.72 ppbv). In other words, the 
model trained on the full data set focuses slightly too much on the noise. 
 
We added additional information to the revised manuscript. Table 2 now lists the 
performance metrics for the two different models. In the text we then motivate the use of 
the model trained on the limited data set: 
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“If the training data set is increased to include all MLS retrievals between 01/01/2005 and 
04/30/2022 (named 2nd model in Table 2) rather than being restricted to periods of 
volcanic activity, the associated correlation coefficients and biases slightly improve to 
0.37 and <7%, indicating a better ability to predict noise. However, further analysis 
indicates that this model performs slightly worse for profiles containing elevated SO2 
concentrations; correlation coefficients for such profiles in the test data set are decreased 
by about 0.05 (R=0.52 compared to R=0.57), while the RMSD increases by about 0.31 
ppbv (5.72 ppbv compared to 5.41 ppbv). Since the main objective of the SO2 NRT is to 
detect volcanic activity, we decided to employ the model trained on the reduced (volcanic 
only) data set.” 

 
lines 235ff: This result suggests that the training data set contains a lot of redundancy, as is 
expected for such a large set measuring effectively the same planet all over. Do you have 
means to identify profiles with high influence on the training performance? And if yes, 
what were they? 
 

This would be an interesting analysis. There are several ways to determine feature 
importance, i.e., determine which input variables (MLS bands, channels, MIFs) are most 
important during the prediction. There also ways to set sample weights, i.e., a way to 
make sure certain profiles are more important than others.  
 
Unfortunately, identifying individual profiles that most contributed to the training 
performance is not possible, at least not with our current setup. That’s because during 
training the loss function is not calculated for individual profiles, but for a collection of 
profiles (called a batch). The batch size is determined by the “mini-batch size” parameter 
(listed in table 1 of the manuscript), which in our case is almost always 32. That means 
that during each training iteration, an average loss is calculated for M batches (where M is 
the total number of profiles, divided by 32). Each of the M batches contains 32 randomly 
selected profiles. After each iteration, the ANN weights are updated based on the average 
loss, the input data get randomly shuffled and assigned to a new set of M batches, and a 
new loss is calculated.  
 
There is the possibility to set the mini-batch size to 1. However, this is not recommended 
as the calculated losses become very noisy, which almost certainly will prevent the model 
from converging. It also means that during each iteration we have to loop over every 
profile in the training data set, which dramatically increases the training time. 

 
Do you foresee a possibility to generate a synthetic set of training data for a new 
instrument, for which no historic data is available? How would this compare for 
instruments, which measure more seldomly, such as ACE-FTS. Would a year of data still 
be sufficient to train the retrieval? 
 

Machine learning approaches are statistical in nature. Using a wide array of synthetic 
composition profiles and radiance data should indeed provide the means to facilitate near-
real-time predictions for a new instrument. Such an approach is not dissimilar to 
calculating look-up tables of synthetic observations for a wide range of viewing 



geometries and cloud variables in MODIS-like cloud property retrievals. As long as the 
radiances accurately describe the actual (noisy) observations and the set of composition 
profiles cover a wide array of possible atmospheric states, that approach should yield 
reliable results. Again, a retrieval approach based on look-up tables is very similar. 
 
We ran a small test to, at the very least, confirm the feasibility of such an approach. 
Instead of creating a large set of possible atmospheric states and running a forward model 
on each to create synthetic MLS radiances, we used simulated radiances for day 51 in 
1996 as input for our ANN-NRT temperature model. That data set is part of our testing 
procedure for the MLS retrieval algorithm. Note that the ANN-NRT models were trained 
on the relationship between a set of noisy MLS radiances and noisy MLS L2 retrievals. 
Applying these models on noise-free radiances and climatological temperature profiles 
introduces considerable uncertainties. 
 
The results are shown in Fig. 2 of this reply. Panels a and b show scatter plots of 
predicted vs modelled temperatures at 100.00 hPa and 21.54 hPa, respectively. While 
model performance is worse compared to our analysis for actually observed MLS 
radiances and retrieved temperature profiles, it still performs reasonably well. Correlation 
coefficients are 0.95 (100.00 hPa) and 0.93 (21.54 hPa). The RMSD>2 K is in the range 
of the results in table 3 of the manuscript. These metrics are also worse than the ones 
based upon a single year of MLS observations (see Fig. 5 of the manuscript). 
 
This approach might also be preferrable for instruments with low sample frequency. 
ACE-FTS, for example, samples about 5,000 composition profiles per year. In our 
experience this is roughly an order of magnitude too low to train a reliable machine 
learning model. However, there are a number of data augmentation techniques (like 
applying Gaussian noise to the input features, as well as to the neuron output in the 
model) that can make the model predictions more robust even for smaller datasets.  

 
Fig. 2: Model performance for simulated temperature profiles and radiances. 

 
 

We performed another small test, where we tried to predict ACE-FTS CH4 based only on 
ACE-FTS N2O concentrations, i.e., predicting the relationship shown in Fig. 1 of 
Minnschwaner and Manney (2014). While not the same thing as relating radiances to 
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composition profiles, it still gives us an idea about the impact of data set size. We 
compared model performance for a model that was trained on 5% (~1 year) to the 
performance of a model that was trained on 25% (~5 years) of data. The size of each 
validation data set is 2% of all ACE-FTS data up to 2022. We then compared the results 
for the remaining data points (i.e., test data); the results are shown in Fig. 3 of this 
response.  

 

 
  Fig. 3: ACE-FTS predictions of CH4. 

 
Overall, there is not a lot of difference between the two models. Using 5 years of data 
increases the correlation coefficient from 0.993 to 0.994. The RMSD is the same between 
the two models at 0.062 ppmv. Naturally, the relationship between radiances and 
compound profiles is a lot more complex than the relationship between N2O and CH4. 
 
While we don’t think it makes sense to add this analysis to the revised manuscript, we 
changed the last sentence of the conclusions to the following: 
“…, which demonstrates the potential of applying machine learning to generate NRT 
products for other current and future mission concepts with similar sampling frequency. 
Alternative approaches, like training ANNs on synthetic profiles of atmospheric 
constituents and simulated brightness temperatures, may be needed for instruments with 
significantly lower sampling rates.” 
 
Reference: Minschwaner, K., Manney, G.L. Derived methane in the stratosphere and 
lower mesosphere from Aura Microwave Limb Sounder measurements of nitrous oxide, 
water vapor, and carbon monoxide. J Atmos Chem 71, 253–267 (2014). 
https://doi.org/10.1007/s10874-015-9299-z 

 
lines 244ff: Typically, level 2 products are associated with a zoo of diagnostic data from 
precision to resolution etc. How is the data provided by the ANN characterised? 
 

This is one of the disadvantages of neural networks compared to Random Forests 
(another popular machine learning framework): the usual implementation of neural 
networks does not supply any uncertainty information. However, we attempt to estimate 
the precision of the ANN predictions based on statistics. We also perform some basic 
data quality checks. 
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We agree that it is important to add this information to the revised manuscript. We 
therefore added a new subsection on data quality to section 3 of the revised manuscript. 
Here is a quick summary of the information:  
The only data quality flag that is used going forward is the precision, which is derived as 
the root mean square of (i) the typical MLS L2 precisions for the given pressure level 
taken from the training data set, and (ii) RMSD between MLS L2 products and the 
predictions for the independent test data set. Negative precisions are assigned to values 
outside the valid pressure range, profiles in overlap regions. Data values with negative 
precisions should not be used. An additional data quality check assures that predictions at 
each pressure level are within a predefined confidence range; precisions for profiles 
where predictions are outside that confidence range (at any pressure level) are set to 
negative 1. 
 
Note that this information is also given in the Version 5 Level-2 Near-Real-Time Data 
User Guide. 

 
lines 261ff: The speed-up of the NRT retrieval is impressive and very useful for the purpose 
of providing near-real-time data. How does this relate to the computational effort for 
training the model? Is this (over the foreseen runtime) still a net positive or does one trade 
in training effort for faster operational results? Does one need a super-computer/cloud 
service for training or is this feasible with a well-equipped work station? 
 

The computational costs of training the ANN-NRT models are not too crazy. The exact 
numbers depend on the specific model setup (number of hidden layers and neurons, mini-
batch size) and the size of the input matrix (number of features and samples). Training a 
model on 1 year of MLS O3 data, for example, requires about 60 GB of memory and 
takes a ~10 hours to converge when trained using 16 CPUs. The size of the data set (i.e., 
how many years are included) does not affect the memory requirements for the training 
process, as the model calculates average losses for a batch of samples; adding more data 
of course affects overall memory usage because the data needs to be readily available. 
Training the O3 model on 18 years of data requires about 100 GB of memory and takes 
about 1 week to fully train when using 16 CPUs. This means that including the time it 
took to determine the best hyperparameters, each ANN-NRT model can be set up and 
trained in about 1 month. 

 
A well- equipped work station is sufficient to develop and train these ANN models. Note 
that tree-based machine learning architectures, like Random Forests and Gradient 
Boosted Decision Trees, can offer similar performance at a fraction of the computational 
costs. These models also convergence significantly faster than ANNs.  

 
 We added the following information to the revised manuscript: 

“The computational costs associated with the training procedure of each ANN-NRT 
model, while dependent on the respective hyperparameters and size of the m x n input 
matrix, are generally as follows: it takes about one month to develop and train each ANN, 
using 12 CPUs and requiring ≈100 GB of memory. 



 
lines 263ff: Are NRT retrievals the only application of the ANN model discussed here? 
Could this data serve as an initial guess to the OE to speed up convergence or are there 
reasons not to use this? 
 

The new ANN-based NRT predictions, as well as the previous OE-based results, could 
theoretically be used as an a priori guess for the operational retrieval. There are, however, 
a number of reasons why we have no plans of doing so:  
(1) A well-defined retrieval problem should converge to the correct solution almost 
independent of the specific a priori profile. 
(2) The retrieval uncertainty/precision would be different, as the a priori uncertainty 
would be different. 
(3) At this point, 18 years into the MLS mission, we are avoiding massive changes to the 
rather complex L2 retrieval algorithm. Using the ANN predictions as a priori profiles 
would require a significant development and testing effort, with possibly little to no 
benefits (see point 1).  
 


