Preprints
https://doi.org/10.5194/egusphere-2022-912
https://doi.org/10.5194/egusphere-2022-912
04 Oct 2022
 | 04 Oct 2022

Using Probabilistic Machine Learning to Better Model Temporal Patterns in Parameterizations: a case study with the Lorenz 96 model

Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik

Abstract. The modelling of small-scale processes is a major source of error in climate models, hindering the accuracy of low-cost models which must approximate such processes through parameterization. Red noise is essential to many operational parameterization schemes, helping model temporal correlations. We show how to build on the successes of red noise by combining the known benefits of stochasticity with machine learning. This is done using a physically-informed recurrent neural network within a probabilistic framework. Our model is competitive and often superior to both a bespoke baseline and an existing probabilistic machine learning approach (GAN) when applied to the Lorenz 96 atmospheric simulation. This is due to its superior ability to model temporal patterns compared to standard first-order autoregressive schemes. It also generalises to unseen scenarios. We evaluate across a number of metrics from the literature, and also discuss the benefits of using the probabilistic metric of hold-out likelihood.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

10 Aug 2023
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023,https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to...
Share