Preprints
https://doi.org/10.5194/egusphere-2022-576
https://doi.org/10.5194/egusphere-2022-576
27 Jul 2022
 | 27 Jul 2022

Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks

Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart

Abstract. The chemical composition of mollusk shells is a useful tool in (paleo)climatology since it captures inter- and intra-annual variability in environmental conditions. Trace element and stable isotope analyses with improved sampling resolution now enable the use of mollusk shells for paleoenvironmental reconstructions at a daily to sub-daily resolution. Here, we discuss hourly resolved Mg/Ca, Mn/Ca, Sr/Ca and Ba/Ca profiles measured by laser ablation ICP-MS through shells of photosymbiotic giant clams (Tridacna maxima, Tridacna squamosa and Tridacna squamosina) and the non-photosymbiotic scallop Pecten maximus. Precise sclerochronological age models and spectral analysis allowed us to extract daily and tidal rhythms in the trace element composition of these shells. We find significant expression of these periodicities but conclude that this cyclicity explains less than 10 % of the sub-annual variance in trace element profiles. Tidal and diurnal rhythms explain variability of at most 0.2 mmol/mol (~10 % of mean value) in Mg/Ca and Sr/Ca, while Mn/Ca and Ba/Ca cyclicity has a median amplitude of less than 2 µmol/mol (~40 % and 80 % of the mean of Mn/Ca and Ba/Ca, respectively). Daily periodicity in Sr/Ca and Ba/Ca is stronger in Tridacna than in Pecten, with Pecten showing stronger tidal periodicity. One T. squamosa specimen which grew under a sunshade exhibits some of the strongest diurnal cyclicity. Daily cycles in trace element composition of giant clams are therefore unlikely to be driven by variations in direct insolation itself but reflect an inherent biological rhythmic process affecting element incorporation. Finally, the large amount of trace element variability unexplained by periodic variability highlights the dominance of aperiodic processes in mollusk physiology and/or environmental conditions on shell composition at the sub-daily scale. Future studies should aim to investigate whether part of this aperiodic variability in shell chemistry reliably records weather patterns or circulation changes in the paleoenvironment.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

28 Jul 2023
Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023,https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a...
Share