Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-567
https://doi.org/10.5194/egusphere-2022-567
22 Jul 2022
 | 22 Jul 2022

The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)

Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler

Abstract. A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development and river blockage hit Radurschl Valley (Ötztal Alps, Tyrol) on 13 August 2019. Compounding effects from multivariate permafrost degradation and drainage network development initiated the complex process chain. The debris flow dammed the main river of the valley, impounding a water volume of 120,000 m3 that was partly drained by excavation to prevent a potentially catastrophic outburst flood. Since the environmental forces inducing the debris flow evolved under ambiguous conditions, potentially destabilizing factors were analyzed systematically to deduce the failure mechanism and establish a basis for multi hazard assessment in similar settings. Identification and evaluation of individual factors revealed a critical combination of topographical and sedimentological disposition, climate, and weather patterns driving the evolution of thermokarst and debris flow. Progressively changing groundwater flow and storage patterns characterizing the hydraulic configuration within the frozen sediment accumulation governed the slope stability of the rock glacier front. The large amount of mobilizable sediment, dynamically changing internal structure, and substantial water flow along a rapidly evolving channel network eroded into the permafrost body, render active rock glaciers complex multi hazard elements in periglacial, mountainous environments.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

20 Jul 2023
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023,https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We analyze the environmental conditions initiating cascading events in permafrost-affected...
Share