Preprints
https://doi.org/10.5194/egusphere-2022-558
https://doi.org/10.5194/egusphere-2022-558
11 Jul 2022
 | 11 Jul 2022

Soil moisture retrieval at 1-km resolution making a synergistic use of Sentinel-1/2/3 data

Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi

Abstract. High-resolution (HR) surface soil moisture (SM) observations are important for applications in hydrology and agriculture, among other purposes. For instance, the S2MP (Sentinel-1/Sentinel-2 derived Soil Moisture Product) algorithm was designed to retrieve surface SM at agricultural plot scale using simultaneously Sentinel-1 (S1) backscatter coefficients and Sentinel-2 (S2) NDVI (Normalized Difference Vegetation Index) as inputs to a neural network trained with Water Cloud Model simulations. However, for many applications, including future climate impact assessment at regional level, a resolution of 1 km is already a significant improvement with respect to most of the publicly available SM data sets, which have resolutions of about 25 km. Therefore, in this study, the S2MP algorithm was adapted to work at a resolution of 1 km and extended from croplands (cereals and grasslands) to herbaceous vegetation types. A target resolution of 1 km also allows to explore the use of NDVI derived from Sentinel-3 (S3) instead of S2. The algorithm improvements are evaluated both over Europe and other regions of the globe, for which S1 coverage is poorer.

Two sets of SM maps at 1-km resolution were produced with S2MP over six regions of about 104 km2 in the southwest and southeast of France, Spain, Tunisia, North America, as well as Australia from 2017 to 2019. The first set of maps was derived from the combination of S1 and S2 data (S1+S2 maps), while the second one was derived from the combination of S1 and S3 (S1+S3 maps). S1+S2 and S1+S3 SM maps were compared to each other and to those of the 1-km resolution Copernicus Global Land Service (CGLS) SM and Soil Water Index (SWI) data sets as well as to the SMAP+S1 product. The S2MP S1+S2 and S1+S3 SM maps are in very good agreement in terms of correlation (R ≥ 0.9), bias (≤ 0.04 m3 m−3) and standard deviation of the difference (STDD ≤ 0.03 m3 m−3) over the 6 domains investigated in this study. The S2MP maps are well correlated to those from the CGLS SM product (R ∼ 0.7–0.8), but the correlations with respect to the other HR maps (CGLS SWI and SMAP+S1) drop significantly over many areas of the 6 domains investigated in this study. In addition, higher correlations between the HR maps were found over croplands and when the 1-km pixels have a very homogeneous land cover. The bias in between the different maps was found to be significant over some areas of the six domains, reaching values of ± 0.1 m3 m−3. The S1+S2 maps show a lower STDD with respect to CGLS maps (≤ 0.06 m3 m−3) than with respect to the SMAP+S1 maps (≤ 0.1 m3 m−3) for all the 6 domains.

Finally, all the HR data sets were also compared to in situ measurements from 5 networks across 5 countries along with coarse resolution (CR) SM products from SMAP, SMOS and the ESA Climate Change Initiative (CCI). While all the CR and HR products show different bias and STDD, the HR products show lower correlations than the CR ones with respect to in situ measurements.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

21 Mar 2023
Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023,https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-558', Anonymous Referee #1, 07 Sep 2022
    • EC2: 'Reply on RC1', Narendra Das, 13 Nov 2022
    • AC1: 'Reply on RC1', Rémi Madelon, 14 Nov 2022
  • RC2: 'Comment on egusphere-2022-558', Anonymous Referee #2, 08 Sep 2022
    • EC3: 'Reply on RC2', Narendra Das, 13 Nov 2022
    • AC2: 'Reply on RC2', Rémi Madelon, 14 Nov 2022
  • RC3: 'Comment on egusphere-2022-558', Gurjeet Singh, 22 Sep 2022
    • EC4: 'Reply on RC3', Narendra Das, 13 Nov 2022
    • AC3: 'Reply on RC3', Rémi Madelon, 14 Nov 2022
  • EC1: 'Comment on egusphere-2022-558', Narendra Das, 02 Nov 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-558', Anonymous Referee #1, 07 Sep 2022
    • EC2: 'Reply on RC1', Narendra Das, 13 Nov 2022
    • AC1: 'Reply on RC1', Rémi Madelon, 14 Nov 2022
  • RC2: 'Comment on egusphere-2022-558', Anonymous Referee #2, 08 Sep 2022
    • EC3: 'Reply on RC2', Narendra Das, 13 Nov 2022
    • AC2: 'Reply on RC2', Rémi Madelon, 14 Nov 2022
  • RC3: 'Comment on egusphere-2022-558', Gurjeet Singh, 22 Sep 2022
    • EC4: 'Reply on RC3', Narendra Das, 13 Nov 2022
    • AC3: 'Reply on RC3', Rémi Madelon, 14 Nov 2022
  • EC1: 'Comment on egusphere-2022-558', Narendra Das, 02 Nov 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish as is (08 Dec 2022) by Narendra Das
ED: Publish subject to minor revisions (further review by editor) (08 Dec 2022) by Narendra Das
AR by Rémi Madelon on behalf of the Authors (16 Dec 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to revisions (further review by editor and referees) (04 Jan 2023) by Narendra Das
ED: Publish as is (25 Feb 2023) by Narendra Das
AR by Rémi Madelon on behalf of the Authors (06 Mar 2023)

Journal article(s) based on this preprint

21 Mar 2023
Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023,https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi

Viewed

Total article views: 1,003 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
649 323 31 1,003 9 6
  • HTML: 649
  • PDF: 323
  • XML: 31
  • Total: 1,003
  • BibTeX: 9
  • EndNote: 6
Views and downloads (calculated since 11 Jul 2022)
Cumulative views and downloads (calculated since 11 Jul 2022)

Viewed (geographical distribution)

Total article views: 948 (including HTML, PDF, and XML) Thereof 948 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 11 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study presents an approach to estimate soil moisture (SM) at a spatial scale of 1-km using the Sentinel 2 and 3 satellites in addition to Sentinel 1. The output data were compared to other data sets over six regions in Europe, Northern Africa, Australia and North America showing a good agreement. In comparison to in situ measurements, the new data set shows better performance than other high-resolution data sets. It is a promising approach to compute high resolution SM maps at global scale.