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Abstract.

High-resolution (HR) surface soil moisture (SM) observations are important for applications in hydrology and agriculture,

among other purposes. For instance, the S2MP (Sentinel-1/Sentinel-2 derived Soil Moisture Product) algorithm was designed

to retrieve surface SM at agricultural plot scale using simultaneously Sentinel-1 (S1) backscatter coefficients and Sentinel-2

(S2) NDVI (Normalized Difference Vegetation Index) as inputs to a neural network trained with Water Cloud Model simula-5

tions. However, for many applications, including future climate impact assessment at regional level, a resolution of 1 km is

already a significant improvement with respect to most of the publicly available SM data sets, which have resolutions of about

25 km. Therefore, in this study, the S2MP algorithm was adapted to work at a resolution of 1 km and extended from croplands

(cereals and grasslands) to herbaceous vegetation types. A target resolution of 1 km also allows to explore the use of NDVI

derived from Sentinel-3 (S3) instead of S2. The algorithm improvements are evaluated both over Europe and other regions of10

the globe, for which S1 coverage is poorer.

Two sets of SM maps at 1-km resolution were produced with S2MP over six regions of ∼ 104 km2 in the southwest and

southeast of France, Spain, Tunisia, North America, as well as Australia from 2017 to 2019. The first set of maps was derived

from the combination of S1 and S2 data (S1+S2 maps), while the second one was derived from the combination of S1 and

S3 (S1+S3 maps). S1+S2 and S1+S3 SM maps were compared to each other and to those of the 1-km resolution Copernicus15

Global Land Service (CGLS) SM and Soil Water Index (SWI) data sets as well as to the SMAP+S1 product. The S2MP

S1+S2 and S1+S3 SM maps are in very good agreement in terms of correlation (R ≥ 0.9), bias (≤ 0.04 m3 m−3) and standard

deviation of the difference (STDD ≤ 0.03 m3 m−3) over the 6 domains investigated in this study. The S2MP maps are

well correlated to those from the CGLS SM product (R ∼ 0.7-0.8), but the correlations with respect to the other HR maps

(CGLS SWI and SMAP+S1) drop significantly over many areas of the 6 domains investigated in this study. In addition, higher20

correlations between the HR maps were found over croplands and when the 1-km pixels have a very homogeneous land cover.

The bias in between the different maps was found to be significant over some areas of the six domains, reaching values of

± 0.1 m3 m−3. The S1+S2 maps show a lower STDD with respect to CGLS maps (≤ 0.06 m3 m−3) than with respect to the

SMAP+S1 maps (≤ 0.1 m3 m−3) for all the 6 domains.

1

https://doi.org/10.5194/egusphere-2022-558
Preprint. Discussion started: 11 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Finally, all the HR data sets were also compared to in situ measurements from 5 networks across 5 countries along with25

coarse resolution (CR) SM products from SMAP, SMOS and the ESA Climate Change Initiative (CCI). While all the CR and

HR products show different bias and STDD, the HR products show lower correlations than the CR ones with respect to in situ

measurements.

1 Introduction

Surface soil moisture (SM) plays a key role in the Earth water cycle as it affects many hydrological processes such as infiltration,30

runoff, evaporation and precipitation (Koster et al., 2004). SM is used to constrain numerical weather prediction (NWP) models

via data assimilation (De Rosnay et al., 2013; de Rosnay et al., 2014; Rodríguez-Fernández et al., 2019). It is also used for crop

yields forecasting, food security and agriculture management (Guerif and Duke, 2000). SM was identified as one of the 50

“essential climate variables” (ECVs) by the Global Climate Observing System in the context of the United Nations Framework

Convention on Climate Change (Plummer et al., 2017; GCOS, 2021). Building long time series of SM is crucial for climate35

applications, and this is the goal of projects such as the European Space Agency’s Climate Change Initiative (ESA CCI) for

SM (Gruber et al., 2019). Both active and passive microwave sensors can be used to estimate SM at coarse resolutions (∼
25-40 km) including the active Advanced Scatterometer (ASCAT, Vreugdenhil et al., 2016), the passive Advanced Microwave

Scanning Radiometer 2 (AMSR2, Kim et al., 2015; Imaoka et al., 2000) and the two sensors that have specifically been

designed to measure SM at L-band: the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2012) and Soil Moisture Active40

Passive (SMAP, Entekhabi et al., 2010). However, despite the actual availability of these SM products they do not match

the requirements of a number of applications. Peng et al. (2020) have discussed a road-map and requirements for future SM

products. An optimal spatial resolution for data assimilation into NWP models and reanalysis would be 5-10 km (global models

are already running with resolutions better than 10 km, see for instance Muñoz-Sabater et al., 2021). The evaluation of climate

models and the assessment of climate change impacts at regional level would also benefit from a higher resolution than that of45

the current generation of coarse resolution sensors. In addition, other applications in hydrology, agriculture and risk assessment

require even higher resolutions of ∼ 1 km (Massari et al., 2021).

Downscaling the coarse scale resolution data by merging them with higher resolution data is a possibility to achieve high

resolutions SM data sets. For example, it can be done using visible/infrared data (Merlin et al., 2012) or using Synthetic

Aperture Radar (SAR, Tomer et al., 2016; Das et al., 2019). SAR observations alone have also been tested to estimate SM using50

different frequencies and instruments such as RadarSAT, ALOS-L or TerraSAR-X. Radar signal is sensitive to the dielectric

constant linked to SM but also to surface geometry (including roughness) and vegetation water content and structure (Ulaby

et al., 1986). Different inversion algorithms have been proposed considering principally three techniques: change detection

algorithms (Wagner et al., 1999; Balenzano et al., 2010; Bauer-Marschallinger et al., 2018), direct inversion of physical or

empirical models (Moran et al., 2000; Srivastava et al., 2009; Pierdicca et al., 2010; Hajj et al., 2014; Bousbih et al., 2017;55

Şekertekin et al., 2018) and finally machine learning methods (El Hajj et al., 2017).
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With the successive launches of the C-band SARs onboard Sentinel-1 A (S1-A, 2014) and Sentinel-1 B (S1-B, 2016), SM can

be estimated at high spatial resolution and with a revisit time better than 6 days over Europe. Three operational high resolution

(HR) SM data sets using S1 exist such as the S1 1-km SM and Soil Water Index (SWI) products from the Copernicus Global

Land Service (CGLS, Bauer-Marschallinger et al., 2018, 2019) and the SMAP+S1 downscaled product (Das et al., 2020)60

with resolutions of 1 or 3 km. SM estimates at a very high resolution (plot scale) at some locations in Europe (as well as in

Lebannon and Morocco) are also distributed by the French continental surfaces data center (THEIA, https://www.theia-land.fr).

In contrast to the CGLS data set, the THEIA SM data set is obtained making a synergistic use of S1 and Sentinel-2 (S2) using

the S2MP algorithm (El Hajj et al., 2017). This data set has been evaluated against in situ data in comparison to SMAP,

SMOS and ASCAT coarse resolution data sets (El Hajj et al., 2018) and with respect to the CGLS S1 SM data set (Bazzi et al.,65

2019), both in the south of France. The S2MP SM showed the lowest unbiased root mean squared errors with respect to in

situ measurements but also a moderate correlation, lower than that obtained for SMAP and ASCAT data sets (El Hajj et al.,

2018). In this region, the S2MP SM showed better performances with respect to in situ measurements than the CGLS SM for

the classical metrics (Bazzi et al., 2019).

Taking into account the importance of having accurate HR SM data sets, a more comprehensive evaluation of existing70

products must be done over different types of surfaces and regions. It is worth noting that even if the current temporal coverage

of the S1 data is relatively short, it is also essential to evaluate their potential future use for climatic applications. For this and

other applications mentioned above a resolution of 1-km is a breakthrough with respect to existing data sets. Moreover, this

target resolution also makes possible to use Sentinel-3 (S3) NDVI as input to the S2MP algorithm in addition to S1 data.

The S1 spatial coverage and revisit time are optimized over Europe and the CGLS products only provided over Europe and75

Mediterranean region. However, it is interesting to evaluate the potential of Sentinel based products over other regions of the

globe. Hence, six domains of∼ 104 km2 were studied in the southwest and southeast of France, Tunisia, North America, Spain

and Australia. The S2MP S1+S2 and S1+S3 maps were compared to those of the SMAP+S1 product as well as those of the

CGLS SM and SWI data sets. The comparison was carried out over the 6 study regions on a per pixel basis and the results were

analysed according to pixel homogeneity for areas covered by croplands and herbaceous vegetation. In addition, the HR time80

series were evaluated against in situ data along with those of coarser resolution SM data sets from SMAP, SMOS, and ESA

CCI.

The paper is structured as follows. Section 2 presents the different remotely sensed and ground based data that are used in

this study. Section 3 describes the methodology used. Section 4 shows the results of the comparisons of the HR maps as well

the assessment against in situ measurements. Section 5 discusses the interest of the S2MP algorithm. Section 6 draws the85

conclusions of the study.
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2 Data

2.1 High resolution soil moisture products

2.1.1 S2MP

The S2MP (Sentinel-1/Sentinel-2 derived Soil Moisture Product) algorithm (El Hajj et al., 2017) estimates surface SM at the90

scale to agricultural plots using synergistically radar signal and optical images from S1 and S2 satellites as inputs to a neural

network. The neural network is trained using a synthetic database gathering (i) SAR C-band backscatter coefficients in the VV

polarization (ii) incidence angles (from 20 to 45 degrees), and (iii) NDVI (Normalized Difference Vegetation Index) as input

and SM examples as target. This synthetic database is built using a Water Cloud Model (Baghdadi et al., 2017) combined with

an Integral Equation Model (Baghdadi et al., 2006, 2011) that are specially modified and optimized for this application.95

In the framework of this study, the trained neural networks were applied to a real database gathering SAR and NDVI

measurements computed from S1 and S2 over croplands and herbaceous vegetation areas at 100-m resolution using the CGLS

land cover map. It does not consider retrievals for other types of land cover. Afterwards, the data were averaged at 1-km

resolution to provide HR SM maps (hereafter S2MPS1S2) over the six ∼ 104 km2 regions of the study. The S2MP algorithm

was also adapted to work directly at 1-km resolution using NDVI from S3 instead of S2 to produce maps for the same six100

regions (hereafter S2MPS1S3, see Sect. 3.1).

2.1.2 SMAP/Sentinel-1 L2

Soil Moisture Active Passive (SMAP) was launched on 31 January 2015 by NASA (National Aeronautics and Space Ad-

ministration). It carries on board a passive radiometer operating at 1.4 GHz (L-band), and a synthetic-aperture radar (active

instrument) operating at 1.2 GHz. The respective spatial resolutions of the two instruments are 40 km and 1 to 3 km, however105

the radar stopped working a few months after launch. SMAP provides passive measurements of the land surface SM in vertical

and horizontal polarizations at a fixed incidence angle of 40 degrees (Entekhabi et al., 2014). SMAP ascending and descending

orbits cross the equator at 6:00 pm and 6:00 am respectively, and the maximum revisit period is 3 days.

The SMAP+S1 L2 V001 product (hereafter SMAPS1) provides SM at 1-km and 3-km resolution that are estimated using

the SMAP Enhanced L3 V004 Half-Orbit at 9-km resolution and Copernicus S1A and S1B C-band SAR data (Das et al., 2020).110

Brightness temperatures from SMAP are disaggregated on the 1-km and 3-km EASE-Grid by using the S1 radar backscatter

data and HR SM retrievals are obtained using the SMAP Active-Passive algorithm. Data are split in two different sets. The first

set only uses the closest data in time from SMAP descending orbits to spatially match up with the S1 scene. While the second

set uses the closest data in time between descending (6:00 am) and ascending (6:00 pm) orbits. The second data set at 1-km

resolution was considered in this study.115
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2.1.3 Copernicus Global Land Service products

The Copernicus Global Land Service S1 Surface Soil Moisture product (hereafter CoperSSM ) is retrieved from the S1 radar

backscatter images estimations over the European continent at 1-km resolution (Bauer-Marschallinger et al., 2019). The images

are acquired at C-band SAR in VV polarization, and the retrieval approach is based on a change detection algorithm (Bauer-

Marschallinger et al., 2018). Changes observed in the C-band SAR backscatter coefficient are interpreted as changes in the SM120

values, whereas other surface properties such as the geometry, surface roughness and vegetation cover are interpreted as static

in time for each pixel. The algorithm provides local relative SM values in percentages ranging between 0% and 100% except

in the case of extremely dry conditions, frozen soil, snow-covered soil and flooding. The data are sampled at 1-km resolution

from 11°W to 50°E and from 35°N to 72°N.

The Copernicus Global Land Service S1 Soil Water Index product (hereafter CoperSWI) is derived from a fusion of125

surface SM observations from S1 C-band SAR and Metop ASCAT sensors (Bauer-Marschallinger et al., 2018). It uses a two-

layer water balance model that is adapted to use a recursive formulation and does not account for soil texture. A Surface State

Flag (SSF) that indicates frozen/unfrozen/melting state of the surface, depending on the temperature, is used to identify SM

values under non-frozen conditions to be used for the SWI calculation. SWI and quality flag values are calculated based on a

phenomenological formulation that depends on a parameter T . An increased T value is either due to an increase in reservoir130

depth or a decreased pseudo-diffusivity coefficient. This means that, for a fixed pseudo-diffusivity constant, an increased T

value represents a deeper soil layer (Paulik et al., 2014). SWI estimations for eight different T values are provided within the

product. Previous evaluations of SWI data by Paulik et al. (2014) and Albergel et al. (2008) showed that the best agreement

with in situ measured surface SM is usually obtained with T values in the range of 5-10, therefore SWI data with T = 5 were

used in this study.135

2.2 Coarse resolution soil moisture products

2.2.1 SMAP products

In addition to the SMAPS1 product (see Sect 2.1), several coarse resolution data sets from SMAP were used for comparison

purposes:

(i) the SMAP L3 V6 SM product (hereafter SMAPL3). It is a daily gridded composite of the SMAP L2 V5 SM files140

(O’Neill et al., 2018, 2019). Only SM retrievals derived from L1C brightness temperatures (Chan et al., 2018) using the Single

Channel Algorithms V-polarization (Entekhabi et al., 2010) were considered. SMAP L3 data are sampled at 36-km resolution.

(ii) the SMAP Enhanced L3 V1 SM product (hereafter SMAPL3E), which is obtained by oversampling the L1C brightness

temperatures from 36-km to 9-km resolution using the Backus-Gilbert interpolation algorithm. Only SM retrievals derived

using the Single Channel Algorithms V-polarization were considered.145
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2.2.2 SMOS products

The Soil Moisture and Ocean Salinity (SMOS) mission is part of the Earth Explorer program from ESA (European Space

Agency), with contributions from CNES (Centre National d’Etudes Spatiales, France) and CDTI (Centro Para el Desarrollo

Tecnológico Industrial, Spain). The satellite was launched on 2 November 2009 to measure globally and frequently the surface

SM over land and sea surface salinity over the oceans (Kerr et al., 2001), with a maximum revisit time of 3 days and Equator150

crossings at 6:00 am and 6:00 pm for ascending and descending overpasses, respectively. The SMOS mission relies on a two

dimensional interferometric instrument operating at L-band (21 cm, 1.4 GHz) able to measure brightness temperatures in both

vertical and horizontal polarizations, at incidence angles from 0 to 60 degrees and with a spatial resolution of 25-50 depending

on the position on the field of view (43 km on average). The following SMOS SM data sets were used in this study:

(i) The CATDS SMOS L3 V3 SM product (hereafter SMOSL3), which is a multi-orbit SM product provided by the Centre155

Aval de Traitement des Données (CATDS) with a grid resolution of 25 km (Al Bitar et al., 2017). The SM retrieval process

is based on the algorithm used for the SMOS L2 product (Kerr et al., 2012), and focuses on the iterative minimization of the

difference between a forward model and the brightness temperatures. The model uses the τ - ω (optical depth-single scattering

albedo) approach to take into account the effect of vegetation. In contrast to the L2 algorithim, the L3 one uses simultaneously

three orbits within a one week period to better constrain the SM and VOD (vegetation optical depth) estimations. The data are160

sampled at 25-km resolution.

(ii) The ESA SMOS Near Neal Time (NRT) Neural Network SM product (hereafter SMOSNRT ), provided on the icosa-

hedral equal area grid (ISEA4H9) with 15-km resolution (Rodríguez-Fernández et al., 2017). It is designed to provide SM in

less than 3.5 h after sensing. The algorithm uses a neural network (NN) trained using SMOS L2 SM data (Kerr et al., 2012).

The input data for the NN are SMOS brightness temperatures with incidence angles from 30 to 45 degrees for horizontal and165

vertical polarizations and soil temperature in the 0–7 cm layer from the European Centre for Medium-Range Weather Forecasts

(ECMWF) models.

2.2.3 ESA CCI COMBINED product

In the COMBINED product of ESA SM CCI version 5.2 (hereafter CCISM ) (Dorigo et al., 2017; Gruber et al., 2019) L2

data sets from different active and passive sensors are directly scaled by matching their Cumulative Density Functions (CDF)170

to that of the GLDAS (Global Land Data Assimilation System, Rodell et al., 2004) Noah land surface model in order to

remove relative biases and harmonize their dynamical ranges. In the period of this study, ESA CCI Combined uses the H SAF

active sensor products from ASCAT-A and -B (Advanced Scatterometer, Wagner et al., 2013) and the passive sensors AMSR2

(Advanced Microwave Scanning Radiometer 2, Kim et al., 2015; Imaoka et al., 2000), SMAP, and SMOS. SM data from the

passive sensors are estimated using the Land Parameter Retrieval Model (LPRM) version 6 (Van der Schalie et al., 2016, 2017).175

The data are sampled at 25-km resolution.
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2.3 Land cover map

The Dynamic Land Cover Map product version 3 provided by CGLS was used to evaluate the different HR and CR data sets.

As described above, it is the same land cover map used by the S2MP algorithm for this study. This product delivers a global

land cover map at 100-m resolution covering the period between 2015 to 2019 (Buchhorn et al., 2020) For each year, a land180

cover map is provided with three different levels of classes: 11 classes at level 1 (all types of forests are considered as an unique

land cover class), 13 classes at level 2 (forests are splitted in two land cover classes: open and closed forests) and up to 22

classes at level 3 (all types of open and closed forests are considered). In this study, only the 2019 land cover map at level 1

was considered. Figure 1 shows the 7 land cover classes that are represented in the six regions of study.

2.4 in situ data185

The evaluation against in situ measurements was performed using data from the REMEDHUS (Gonzalez-Zamora et al., 2018),

SMOSMANIA (Calvet et al., 2007), OZNET (Smith et al., 2012; Young et al., 2008), USCRN (Bell et al., 2013) and the

Merguellil networks (Gorrab et al., 2015) that are located within the six regions of this study. All the data, except those from

the Merguellil network, were retrieved from the International Soil Moisture Network (ISMN, Dorigo et al., 2011, 2021). Only

sensors between 0 and 5 cm depth were considered. In total, 43 ISMN and 6 Merguellil sites were used for the evaluation190

(Table 1).

3 Methods

3.1 Building S2MP maps using NDVI derived from Sentinel-2 and Sentinel-3

The S2MP algorithm for soil moisture estimation requires as input values the SAR backscatter coefficient in VV polarization,

the incidence angle of the SAR acquisition and the NDVI derived from optical images. The NDVI could be either derived from195

S2 or S3 images. In this study, the use of the S2 and S3 NDVI was tested for soil moisture estimation using the S2MP . In

the first version of the S2MP algorithm, NDVI values required as input for the neural network are derived from S2 optical

images. The NDVI was first calculated at 10-m spatial resolution (native resolution of the S2) using atmospherically and ortho-

rectified S2 images. To overcome the cloud cover issue present in optical images, a gap filling was performed using the linear

interpolation to obtain two cloud-free NDVI images per month (1st and 15th of each month). Over each study site and at each200

S1 acquisition, the 10-m resolution S1 backscattering signal, incidence angle and S2 NDVI (nearest NDVI date to the S1 date)

are averaged for each 100-m masked land cover pixels (cropland and herbaceous vegetation). The SM estimation using the

S2MP algorithm is thus obtained at 100-m spatial resolution. The 100-m SM estimations were then aggregated at 1-km grid

scale, by averaging the 100-m SM estimation within each 1-km grid cell, to obtain the 1-km SM product using the same 1-km

grid extent of the CoperSSM product. In the second version of the S2MP algorithm, the S3 NDVI was used instead of the205

S2 NDVI. In this case, the S1 VV backscattering and the incidence angle at each S1 acquisition were averaged directly at 1-km

scale only for croplands and herbaceous vegetation areas inside each 1-km grid cell and the NDVI values were derived directly
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from the S3 images at 1-km scale. The SM estimation using the neural network inversion was thus directly applied at 1-km

grid scale to obtain 1-km SM estimations.

3.2 Data sets comparisons and evaluations210

Comparisons between data sets and evaluations against in situ measurements were done from January 2017 to December 2019.

Only ascending orbits from SMOS and descending orbits from SMAP within this time period were considered.

Relative indices from CoperSSM and CoperSWI were scaled against in situ data, for each region independently. This

process is needed to transform the indices into SM values with volumetric units (m3 m−3). The following scaling formula was

applied:215

SM∗
n = SMn × [max(SM IS

n )−min(SM IS
n )]+ min(SM IS

n ) (1)

where SMn and SM∗
n are respectively the original and scaled SM values from CoperSSM . SM IS

n include all the SM obser-

vations from all the in situ time series available for the current region n. The 5% lowest and highest values are discarded before

applying the minimum and maximum functions to remove the effect of possible outliers. The same process was also undertaken

to scale the SWI values from CoperSWI . The Copernicus indices were also scaled using SMOSL3 or SMAPL3 to obtain220

the maximum and minimum references instead of in situ data. The final results were quite comparable regardless the reference

used and thus only the scaling against in situ was used for the rest of the study.

Since all the HR data sets are sampled on the same 1-km regular grid, the different time series were compared on a per pixel

basis for each region in terms of Pearson correlation (R), bias and standard deviation of the difference (STDD, also referred

to as unbiased Root Mean Square of the Difference by some authors) creating maps of each metric. The results were analyzed225

as a function of the land cover class. More precisely, S2MPS1S2 were compared to CoperSSM , CoperSWI and SMAPS1.

Of course, the S2MPS1S3 maps were also compared to those of S2MPS1S2.

Finally, all the different CR and HR data sets were evaluated against the in situ data available in the 6 regions of study.

For each ground station, the closest time series of each remotely sensed data set was compared to the in situ measurements

by computing the correlation, bias and STDD. Only samples for which the difference in acquisition times with the in situ230

measurements does not exceed 1 hour were taken into account to compute those statistical metrics. Then, only in situ locations

where all the data sets provide a time series were used (Tab. 1). Time series of anomalies in a 35-days time window were also

derived as follows.

SMa
t = (SMt −µt)/σt

µt = 1/N ×
∑t2

n=t1
SMn

σt =
√

1/(N − 1)×
∑t2

n=t1
(SMn −µ)2

(2)
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where SMa
t and SMt are the SM and anomalies values at time t, respectively. N is the number of observations from t minus235

17 days (t1) to t plus 17 days (t2).

Finally, the HR data were also evaluated against in situ measurements after aggregation at a 25-km resolution in order to

compare their performances to the CR data at a comparable resolution.

4 Results

4.1 Sentinel-3 versus Sentinel-2 NDVI240

The S2 and S3 NDVI were compared in each site at 1 km grid scale to help better understand the reliability of using the S3

NDVI instead of the S2 NDVI when estimating the SM at 1 km grid scale using the S2MP algorithm. The S2 NDVI at 1

km grid scale was calculated by averaging the S2 NDVI pixels at 10 m scale corresponding to the cropland and herbaceous

vegetation within each 1 km grid cell (same grid of the S3 NDVI) and compared to the S3 NDVI obtained at 1 km. Figure 2

shows scatter plots between the S2-NDVI and the S3-NDVI over the year 2019 for all the study sites. Figure 2 shows that the245

correlation between the S2-NDVI and the S3-NDVI varies across the studied sites with high correlations observed in Australia

(0.86) and Tunisia (0.79), moderate correlations for both USA (0.68) and Spain (0.64) and no correlation in the west and east

of Occitanie. The results indicate that in dry regions such as that in Australia, Tunisia and USA high correlation exists between

S2 and S3 NDVI whereas low correlation between S2 and S3 NDVI is present in humid areas such as the Occitanie region.

The results also show that the S3-NDVI for all sites saturates at approximately between 0.6 and 0.7 whereas the S2-NDVI250

reaches higher values between 0.8 and 0.9. The lower NDVI values provided by S3 NDVI compared to the S2 NDVI could be

mainly due to the mixture of the surface reflectance for different land cover classes in the 1 km S3-NDVI. Figure 3 shows the

distribution of the correlation coefficient (R2) values for each site as a function of the months. The results show that in the dry

periods of the year (summer season of each site), the correlation between the S2 and S3 NDVI is higher than that in the winter

and spring season. For example, the Australian site shows that the correlation between the S2-NDVI and the S3-NDVI is only255

high (0.72) in the summer and autumn season between January and June. In USA, months from March to July had a correlation

between 0.25 and 0.53 whereas other months had no correlation between the S2 and S3 NDVI values. In Occitanie east and

west, most of the months show no correlation between the S2 and S3 NDVI values except for some summer months such as

June, July and August. In fact, winter and spring seasons encounters the highest NDVI values due to the development of the

vegetation cycles. On the other hand, summer seasons usually have low NDVI values corresponding to bare soil conditions260

except in the presence of irrigated summer crops. Thus, for low NDVI values (usually in summer) the S2 and S3 are highly

correlated whereas for high NDVI values with the peak of the vegetation development (in spring) the correlation between S2

and S3 decreases.
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4.2 Comparison between S2MPS1S2 and S2MPS1S3

Figure 4 shows the Pearson correlation (R), bias and standard deviation of the difference (STDD) between the S2MPS1S2265

and S2MPS1S3 maps. A very good agreement between the two data sets was found in the six regions with R ≥ 0.9, bias ≤
0.04 m3 m−3 (S2MPS1S3 minus S2MPS1S2) and STDD ≤ 0.03 m3 m−3 for most of the areas. However, some differences

can be seen between the two data sets in the northwest of the Spanish region, in the areas with significant forests cover in

the France southwest region and in narrow areas of the Tunisian region. The somewhat higher differences in the Spanish and

France southwest regions are seen over pixels covered by a mix of forests, croplands and herbaceous vegetation (dominated270

by forests), while the somewhat larger differences in some narrow areas of Tunisia is due to heterogeneous land cover around

several river basins with rolling topography, sparse forests as well as grasslands.

As discussed above, these small differences are expected due to the use of S3 NDVI estimated at 1-km resolution instead of

S2 NDVI at 100-m resolution, which are then aggregated only for croplands and herbaceous vegetation areas within the 1-km2

pixels. However, taking into account the overall very good agreement of S2MPS1S2 and S2MPS1S3 maps, for the sake of275

simplicity and clarity, in the following sections only S2MPS1S2 is compared to the other HR data sets.

4.3 Comparison of S2MPS1S2 against the HR SM data sets

Figures 5, 6 and 7 present the comparison of S2MPS1S2 against CoperSSM , CoperSWI as well as SMAPS1 over the six

study regions in terms of bias, standard deviation of the difference (STDD), and Pearson correlation (R), respectively. Some

diagonal structures can be seen in the maps comparing S2MPS1S2 to CoperSSM in Spain and in the southwest of France.280

These artifacts, most pronounced in the Pearson correlation maps but also present in the bias and STDD maps, come from

the CoperSSM data as previously discussed by Bazzi et al. (2019). Indeed, the artifacts are seen on the sub-swaths of the S1

product showing a big difference between the SM estimations in the CoperSSM at the same SM estimation date. Bazzi et al.

(2019) showed that the difference of the SM estimation at both sides of the sub-swath at a given date of the CoperSSM map

can reach 0.11 m3m−3.285

4.3.1 Absolute values

Figure 5 shows that S2MPS1S2 show a bias in the range from -0.1 to 0.1 m3 m−3 with respect to the other HR products

over most of the pixels within the six regions of study. However, there are areas in the Spanish, Tunisian and France south-

east domains, where S2MPS1S2 shows a dry bias of absolute value larger than 0.1. This is also particularly the case in the

southwest of France, with respect to CoperSSM and CoperSWI as well as with respect to SMAPS1 in Australia and North290

America. For these regions and HR data sets, the bias is negative over the whole area. For all the other combinations of regions

and HR products, the bias values are both positive and negative. For instance, the bias distribution of S2MPS1S2 with respect

to SMAPS1 in the France southwest region is splitted in two (Fig. 5i). The bias is wet in the west part of the region and

dry in the east part. There is no clear relationship between this behavior and the dominant land cover class. However, the dry
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bias observed in the east part of the Tunisian region corresponds to an area of salted lakes, named Sebkha, whose water and295

moisture contents can vary significantly according to climate.

Figure 6 shows that the STDD values of S2MPS1S2 with respect to CoperSSM and CoperSWI are lower than 0.05

m3 m−3 over almost all the pixels of the 4 regions where the Copernicus data sets are available. However, the STDD obtained

with respect to SMAPS1 (Fig. 6c,i,l) are often much higher and can reach 0.12 m3 m−3. These significant differences are

specifically observed in the west part of the Spanish region, the east part of the France southwest region as well as the northwest300

part of the France southeast region. The STDD obtained in Tunisia with respect to SMAPS1 (Fig. 6f) are comparable to

those obtained with respect to the Copernicus data sets (Fig. 6d,e) in the north part of the same region, and do not exceed

0.06 m3 m−3. In Australia and North America (Fig. 6m,n), the STDD with respect to SMAPS1 are quite similar to those

found in Spain and France (Fig. 6c,i,l), where values can reach ∼ 0.08− 0.1 m3 m−3 in the southeast and northwest parts of

the Australia and North America regions, respectively. There is no clear and unique relationship with the dominant land cover305

class. For instance, the STDD with respect to SMAPS1 in the southwest of France is higher over the forests than over the

croplands dominated areas, while in the North America region the STDD was found to be lower over the forest.

4.3.2 Temporal dynamics

Overall, S2MPS1S2 and CoperSSM show a high correlation (above 0.7-0.8) over almost all the pixels for all the regions of

study (Figs. 7a,d,g,j). In contrast, lower values are found for the correlation between S2MPS1S2 and CoperSWI (maximum310

values of 0.6-0.7 and values lower than 0.4 in many large areas, Figs. 7b,e,h,k). Finally, the lowest correlation values are

obtained with respect to the SMAPS1 data set (Figs. 7c,f,i,l,m,n).

In the Spanish region, the highest correlation values are obtained in the areas dominated by croplands. The lowest values

are found in the northwest and in a few spots in the south and the center of the region. In all cases, those are areas with

heterogeneous land cover dominated by forests. Similar spatial features are observed in the three maps comparing S2MPS1S2315

to CoperSSM , CoperSWI and SMAPS1 (Figs. 7a-c) but with lower values of correlation with respect to CoperSWI . The

areas of high correlation with respect to SMAPS1 show higher values than with respect to CoperSWI but the areas with

low correlation also show lower values than with respect to CoperSWI .

In Tunisia (Fig. 7d-f), the correlations obtained in the north are quite good with values of 0.8-0.9 with respect to CoperSSM

and 0.6-0.7 with respect to SMAPS1. The values drop in the south to values lower than 0.3, especially near the coasts, where320

mixed land cover pixels include urban areas. The correlation with respect to CoperSWI (Fig. 7e) is only higher than 0.5 for

the regions where the 1-km2 pixels are dominated by croplands (Fig. 1).

In the France southwest region (Fig. 7g-i), there is a clear frontier from the areas where the pixels are dominated by croplands

with respect to the areas dominated by forests (Fig. 1). In the case of the correlation with respect to CoperSSM , values remain

higher than 0.7 for most of the areas dominated by forests. However in the case of the correlation with respect to CoperSWI325

and SMAPS1, values in those areas decrease to lower than 0.3. In the France southeast region (Fig. 7j-l), correlations are only

significant with respect to CoperSSM and in regions dominated by croplands.
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The correlations between S2MPS1S2 and SMAPS1 reach 0.6-0.7 in Australia (Fig. 7m). Similar moderate to low correla-

tion values are obtained in North America with no clear relationship with the land cover type (Fig. 7n).

4.3.3 Comparison as a function of land cover330

As discussed above, the correlation maps show some features related to the dominant land cover class, in particular, higher

correlations are found for areas dominated by croplands and herbaceous vegetation. To get further insight into the effect of

the dominant land cover and the homogeneity of the land cover within the 1-km2 pixels, Table 2 gives the median Pearson

correlation (R) of S2MPS1S2 with respect to CoperSSM , CoperSWI and SMAPS1 for pixels dominated by croplands

and herbaceous vegetation to different extend: (i) "mixed" pixels in which croplands or herbaceous vegetation are the dominant335

land cover class in any proportion and (ii) "homogeneous" pixels in which croplands or herbaceous vegetation represent at

least 75% of the 1-km2 area.

In the Spanish region, S2MPS1S2 is better correlated to CoperSSM (R∼ 0.7-0.8) than CoperSWI (∼ 0.55-0.65) and

SMAPS1 (R∼ 0.45-0.65) when pixels become more homogeneous. The same pattern can be observed in the southwest and

southeast of France when S2MPS1S2 is compared to CoperSSM and CoperSWI over croplands. Correlations between340

S2MPS1S2 and SMAPS1 significantly drop in those regions (R∼ 0.2-0.5) over croplands as well as herbaceous vegetation

areas. In addition, S2MPS1S2 shows very low correlations with respect to the other SM HR data sets in Tunisia (R∼ 0.2-0.55)

for the both land cover types. However, the correlations obtained between S2MPS1S2 and SMAPS1 in Australia and North

America (R∼ 0.5-0.55) are higher than those found in France and Tunisia, both over croplands and herbaceous vegetation.

Compared to the other HR data sets, S2MPS1S2 shows generally higher correlations over croplands than over herbaceous345

vegetation. In addition, there is a clear improvement in correlation of S2MPS1S2 with respect to the other data sets when the

land cover within the pixel is homogeneous, in particular over croplands.

4.4 Evaluation against in situ data

Table 3 presents the evaluation of the different CR and HR SM products with respect to in situ data in terms of bias, STDD

and Pearson correlation of the original time series (R) as well as Pearson correlation of the anomalies time series (Ra). The350

highest bias is obtained for CCISM with 0.07 m3 m−3. The SMAP products, S2MPS1S2 as well as SMOSNRT show the

lowest bias (≤ 0.005m3 m−3 in absolute value) with respect to in situ data.

The highest (0.08 m3 m−3) and lowest STDD (0.04 m3 m−3) are obtained for CoperSSM and CCISM , respectively.

S2MPS1S2, as most of the data sets, shows an in between value with 0.05 m3 m−3.

The highest correlation values are obtained for the coarse resolution data (0.65-0.68) and the lowest for the S2MPS1S2355

and CoperSSM Sentinel-only HR data sets (0.44-0.48). The HR data obtained from merging approaches (CoperSWI and

SMAPS1) show intermediate values (0.60-0.64).

Regarding the correlation of the anomalies time series, CoperSWI gets the highest Ra with respect to in situ data with

0.49, closely followed by SMAPL3E with 0.46. CoperSSM and SMAPS1 show the lowest performances with Ra equal
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to 0.25 and 0.26. S2MPS1S2 gets an higher value with 0.36, which is also better than two CR data sets: SMOSL3 (Ra∼0.30)360

and SMOSNRT (Ra∼0.33).

The performances of the two Sentinel-only HR data sets averaged at 25-km resolution with respect to in situ data are compa-

rable to the performances obtained for the original 1-km data sets. The performance of the merged ASCAT+S1 (CoperSWI∗)

averaged at 25-km resolution is also similar to that of the 1-km resolution data set (CoperSWI). In contrast, for the SMAPS1∗

data set, which is a downscaled product, the correlation increases from 0.60 at 1-km resolution (SMAPS1) to 0.69 at 25-km365

resolution. Ra also increases from 0.26 at 1-km resolution to 0.32 at 25-km resolution, but it does not reach the values of Ra

obtained for the SMAP-only (SMAPL3 and SMAPL3E) products (0.43-0.46).

5 Discussion

The four HR data sets evaluated in this study have been produced with different approaches. Two products were obtained by

merging S1 data with ASCAT (CoperSWI) and SMAP (SMAPS1), respectively. S2MPS1S2 and CoperSSM are based on370

Sentinel-only. The last one is computed from local temporal variations of the S1 backscatter coefficients time series following

the method of Wagner (1998). In contrast, S2MPS1S2 uses electromagnetic modelling to compute a database predicting

backscatter coefficients from surface characteristics such as SM and vegetation status (approximated by NDVI). This database

is in turn used to train a neural network to predict SM from S1 backscatter coefficients and HR NDVI estimations.

Initially, the S2MP algorithm by El Hajj et al. (2017) was limited to croplands and the use of NDVI derived from S2. In the375

framework of this study, the algorithm has been extended to herbaceous vegetation areas. In addition, two methodologies are

used to mimic vegetation dynamics. In the first approach, S1 backscatter coefficients and S2 NDVI are estimated over croplands

and herbaceous vegetation areas at a 100-m resolution and then they are aggregated within 1-km2 pixels (S2MPS1S2). In the

second approach, instead of using S2 NDVI, S3 NDVI are obtained directly at a resolution of 1 km (S2MPS1S3).

The results of this study show that when the target resolution is 1 km, it is possible to replace S2 NDVI by S3 NDVI in380

the S2MP approach without losing skill. Regarding the comparison to the other Sentinel-only product (CoperSSM ), high

correlations have been found over croplands and herbaceous areas (Tab. 2). Different SM dynamics are actually noticeable,

e.g., in the forested areas of southwestern France (Fig. 1 and 7).

In addition, slightly better results of S2MPS1S2 with respect to in situ measurements compared to those of CoperSSM

were found (Table 3). This is also true for the bias even if the CoperSSM retrievals have previously been scaled against385

the in situ data. Most of the ground sites are representative of croplands and herbaceous regions. Therefore, it is difficult to

evaluate the relative performance against in situ measurements over other land cover types for which more differences would be

expected, e.g., forest cover. On the one hand, by construction, the S2MP algorithm starts being out of its application domain

when considering pixels dominated by forests cover. On the other hand, the CoperSSM indices computation does currently

not account for vegetation dynamics, which can lead to biases with respect to in situ data over areas covered by seasonal and390

dense vegetation. In addition, for most applications the CoperSSM indices should also be transformed into SM time series
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and this will be problematic without reference SM values under forest to scale them. Therefore, an extension of the S2MP

approach to forest areas would definitely be interesting to provide HR SM mapping over large regions.

SM retrievals using the S2MP approach were already evaluated against in situ measurements along with other HR and CR

data sets by El Hajj et al. (2018) and compared to CGLS SM byBazzi et al. (2019). In their evaluation with respect to in situ395

data, El Hajj et al. (2018) found that the S2MPS1S2 data set shows lower correlations than SMAPL3 and SMAPL3E but

higher correlations than SMOSNRT , SMOSL3 and SMAPS1. In contrast, in the current study, the S2MPS1S2 shows a

lower correlation against in situ data than the other products. These differences can be due to the fact that the analysis was

only carried out in the south of France during a different time period (from January 2016 to June 2017). Moreover, in El Hajj

et al. (2018), SM estimates from the S2MP algorithm were only derived over croplands while in our study, the S2MP SM400

retrievals were performed both for croplands and herbaceous vegetation. However, the results of the current study are in good

agreement with those of El Hajj et al. (2018) in terms of bias. In both studies, S2MPS1S2 shows low bias compared to in situ

measurements, similar to or lower than the CR data sets. Regarding the S2MPS1S2 and CoperSSM comparison by Bazzi

et al. (2019), it is interesting to note that S2MPS1S2 is better correlated to in situ data than CoperSSM , which is in agreement

with the results of our study (Table 3).405

Taking into account the results discussed in the previous section, HR merged products (SMAPS1, CoperSWI) provide

better estimations or temporal agreement with in situ data than the HR Sentinel-only data (S2MPS1S2, CoperSSM ) (Tab.

3) but still show lower performances than the CR data. This was also found by Bauer-Marschallinger et al. (2019), who

demonstrated that 25-km resolution SM estimates from ASCAT were better correlated to in situ measurements within the

Italian Umbria region that those of the 1-km resolution CoperSSM . The results of our study are also in perfect agreement410

with the findings by Ojha et al. (2021), who showed that two merged products, SMAPS1 and SMAP + DISPATCH (Merlin

et al., 2012), were better correlated to in situ data than CoperSSM over several regions in France and Spain.

When aggregated to CR, the performances of the SMAPS1 1-km data increase to values similar to those of the SMAPL3

data. This implies that the gain in resolution brought by merging data of different resolutions comes at the expense of intro-

ducing uncertainties in the resulting HR data set.415

Obviously, this study was limited to comparisons over six regions of 104 km2 within a 3-years time period, so the results can

not be straightforwardly extended to a global scale. However, it is noticeable that the HR products provide SM estimates using

C-band measurements while the CR data sets used in this study are computed using L-band measurements. Indeed, SMOS and

SMAP were specifically designed to measure surface SM, which was not the case for the Sentinel satellites.

6 Conclusions420

The goal of this study was to adapt the S2MP approach, originally designed to retrieve SM at the plot scale over agricultural

fields, to a 1-km resolution, which allows to replace S2 by S3 NDVI and to significantly improve the temporal sampling. In

addition, the approach was extended to herbaceous land cover areas in addition to croplands and tested in six regions over four

continents to assess its performances beyond previous evaluations in Southern France.
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Very good agreement was found between the S1+S2 and the S1+S3 S2MP maps in terms of correlations (R ≥ 0.9), bias425

(≤ 0.04 m3 m−3) and standard deviation of the difference (STDD ≤ 0.03 m3 m−3) for the 6 regions.

The S2MP maps were compared to those of the 1-km surface SM product provided by CGLS, which is also a Sentinel-only

based data set. In contrast to S2MP , the CGLS surface SM is a local index of SM variations and for many applications it

has to be scaled against a reference to transform the variation index to actual SM in volumetric units (m3 m−3) before being

used. S2MP was also compared to two HR merged data sets, i the SWI from CGLS combining S1 and ASCAT measurements430

as well as ii the SMAP+S1. As for the surface SM data set, the SWI data had to be scaled into absolute SM values. CGLS

products only provide retrievals over the European continent and the Mediterranean basin.

The results showed that the S2MP data set is well correlated to the 1-km surface SM product provided by CGLS in large

areas of the 6 regions of study: R ∼ 0.7-0.8. However, the correlations significantly drop in some areas of the 6 domains when

the S2MP maps are compared to those of the SWI product and those of SMAP+S1. Over almost all the pixels within the 6435

regions, the standard deviation of the difference (STDD) between S2MP and the CGLS products are lower than 0.06 m3 m−3

while the values obtained with respect to SMAP+S1 can reach 0.1 m3 m−3. Then, the bias between S2MP and the other HR

data sets differ significantly inside a same region and can be strongly dry or wet (± 0.1 m3 m−3). The correlations between

S2MP and the other HR data sets improve over croplands when the 1-km pixels are homogeneous but a similar behaviour was

not found for pixels where the dominant land cover class is herbaceous vegetation.440

The HR products were also evaluated with respect to in situ measurements along with coarser resolution data sets from

SMOS, SMAP and ESA CCI. The coarse resolution (CR) products show higher correlations (0.65 ≤ R ≤ 0.68) than the HR

data sets (0.44≤R≤ 0.64), and the HR merged data sets showed higher correlations than the HR Sentinel-only ones. However,

as several SMAP and SMOS data sets, S2MP also showed a very low bias with respect to in situ measurements. Finally, the

STDD differ according to the data set as well as the spatial resolution and range from 0.04 to 0.08 m3 m−3 for the ESA CCI445

product to the SWI product.

The S2MP algorithm gave promising results over the 6 regions of study. Of course, for some applications the approach

should be extended to consider other land cover types than croplands and herbaceous. For instance, a 1 km resolution SM data

sets over all land cover types could be used to asses climate impact at regional level in the future when 1 km SM times series

are longer. Finally, a remaining challenge is to provide HR SM data with comparable spatio-temporal coverage and retrieval450

quality across different land cover types than those of the state-of-the-art coarse resolution products, such as the SMOS, SMAP

and ESA CCI products.
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Figure 1. Copernicus land cover maps of the 6 regions of study at 1-km spatial resolution. Only the dominant land cover type within a 1-km2

pixel is shown. For instance, a pixel characterised as forests can contain 27% of forests, 26% of croplands, 24% of herbaceous vegetation

and 23% of shrublands, or 90% of forests and 10% of herbaceous vegetation.

Table 1. In-situ measurements that were used in this study. The depths are quoted as two numbers: the first one is the upper depth, and the

second one is the lower depth of the sensor. Both numbers are equal when the sensor is placed horizontally. The fourth column gives the

number of sensors available for each region.

.

Location Measurements Depth (m) Sensors Reference

Spain REMEDHUS 0–0.05 20 Gonzalez-Zamora et al. (2018)

Southwest of France SMOSMANIA 0.05–0.05 4 Calvet et al. (2007)

Southeast of France SMOSMANIA 0.05–0.05 6 Calvet et al. (2007)

Australia OZNET 0–0.05 11 Smith et al. (2012); Young et al. (2008)

North America USCRN 0.05–0.05 2 Bell et al. (2013)

Tunisia MERGUELLIL 0–0.05 6 Gorrab et al. (2015)
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Figure 2. Correlation between S2 and S3 NDVI at 1-km grid scale over one year for the 6 study sites.
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Figure 3. Correlation between S2 and S3 NDVI at 1-km grid scale each month for the 6 study sites. Months having no bars means that there

is no correlation between S2 and S3 NDVI.

19

https://doi.org/10.5194/egusphere-2022-558
Preprint. Discussion started: 11 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 4. Comparison of S2MPS1S3 with respect to S2MPS1S2 over the regions of study in terms of Pearson correlation (R) as well as

bias (S2MPS1S2 minus S2MPS1S3) and standard deviation of the difference (STDD) in m3 m−3.
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Figure 5. Comparison of S2MPS1S2 with respect to CoperSSM (S2MPS1S2 minus CoperSSM ), CoperSWI (S2MPS1S2 minus

CoperSWI) and SMAPS1 (S2MPS1S2 minus SMAPS1) over the regions of study in terms of bias in m3 m−3.
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Figure 6. Comparison of S2MPS1S2 with respect to CoperSSM , CoperSWI and SMAPS1 over the regions of study in terms of

standard deviation of the difference (STDD) in m3 m−3.

22

https://doi.org/10.5194/egusphere-2022-558
Preprint. Discussion started: 11 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 7. Comparison of S2MPS1S2 with respect to CoperSSM , CoperSWI and SMAPS1 over the regions of study in terms of

Pearson correlation (R).
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Table 2. Comparison of S2MPS1S2 against the HR SM products, in terms of Pearson correlation (R), over 1-km2 pixels where croplands

and herbaceous vegetation are the dominant land cover classes. M stands for "mixed" pixels in which croplands or herbaceous vegetation

are the dominant land cover classes in any proportion while H stands for "homogeneous" pixels, in which at least 75% of the 1-km2 area is

covered by croplands or herbaceous vegetation. Only median values are shown.

Regions Products Croplands Herbaceous veg

M H M H

CoperSSM 0.75 0.77 0.67 0.66

Spain CoperSWI 0.64 0.65 0.56 0.59

SMAPS1 0.60 0.63 0.46 0.48

CoperSSM 0.41 0.54 0.26 0.24

Tunisia CoperSWI 0.34 0.44 0.23 0.24

SMAPS1 0.40 0.48 0.30 0.31

Southwest CoperSSM 0.69 0.77 0.64 0.52

of CoperSWI 0.58 0.64 0.52 0.56

France SMAPS1 0.36 0.48 0.27 0.18

Southeast CoperSSM 0.68 0.78 0.39 -

of CoperSWI 0.53 0.56 0.27 -

France SMAPS1 0.32 0.29 0.22 -

CoperSSM - - - -

Australia CoperSWI - - - -

SMAPS1 0.49 0.52 0.49 0.52

CoperSSM - - - -

North America CoperSWI - - - -

SMAPS1 0.54 0.54 0.53 0.54
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Table 3. Evaluation of the HR and CR SM time series against in situ data in terms of Pearson correlation (R,Ra), bias (remotely sensed

minus ground based SM in [m3m−3]) and standard deviation of the difference (STDD in [m3 m−3]). The metrics were computed by taking

into account the 6 regions of study together and only the median values are shown here. The symbol ∗ indicates the HR data sets averaged at

25-km resolution.

Products R Ra Bias STDD

Sentinel-only high resolution data

S2MPS1S2 0.48 0.36 0.003 0.05

CoperSSM 0.44 0.25 0.05 0.08

Merged high resolution data

CoperSWI 0.64 0.49 0.06 0.05

SMAPS1 0.60 0.26 -0.001 0.07

Coarse resolution data

SMAPL3 0.68 0.43 0.005 0.05

SMAPL3E 0.68 0.46 0.002 0.05

SMOSL3 0.65 0.30 0.01 0.07

SMOSNRT 0.67 0.33 -0.004 0.06

CCISM 0.68 0.40 0.07 0.04

High resolution data aggregated to coarse resolution

S2MP ∗
S1S2 0.49 0.33 0.01 0.05

CoperSSM∗ 0.43 0.22 0.05 0.07

CoperSWI∗ 0.63 0.48 0.06 0.05

SMAPS1∗ 0.69 0.32 0.01 0.05
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