Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-41
https://doi.org/10.5194/egusphere-2022-41
08 Apr 2022
 | 08 Apr 2022

Moana Ocean Hindcast – a 25+ years simulation for New Zealand Waters using the ROMS v3.9 model

Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan

Abstract. Here we present the first open access long term 3D hydrodynamic ocean hindcast for the New Zealand ocean estate. The 28 years 5 km x 5 km resolution free running ocean model configuration was developed under the umbrella of the Moana Project, using the Regional Ocean Model System (ROMS) version 3.9. It includes an improved bathymetry, spectral tidal forcing at the boundaries, and inverse barometer effect usually absent from global simulations. The continuous integration provides a framework to improve our understanding of the ocean dynamics and connectivity, as well as identify long-term trends and drivers for particular processes. The simulation was compared to a series of satellite and in-situ observations, including sea surface temperature (SST), sea surface height (SSH), coastal water level and temperature stations, moored temperature time series, and temperature and salinity profiles from the CORA5.2 dataset – including Argo floats, XBT and CTD stations. These comparisons show the model simulation is consistent and represents important ocean processes at different temporal and spatial scales, from local to regional and from a few hours to years including extreme events. The root-mean-squared errors are 0.11m for SSH, 0.23 °C for SST, and < 1 °C and 0.15 g/kg for temperature and salinity profiles. Coastal tides are simulated well, and both high skill and correlation are found between modelled and observed sub-tidal sea level and water temperature stations. Moreover, cross-sections of the main currents around New Zealand show the simulation is consistent with transport, velocity structure, and variability reported in the available literature. This first multi-decadal, high resolution, open access hydrodynamic model represents a significant step forward for ocean sciences in the New Zealand region.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

09 Jan 2023
Moana Ocean Hindcast – a  > 25-year simulation for New Zealand waters using the Regional Ocean Modeling System (ROMS) v3.9 model
Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 211–231, https://doi.org/10.5194/gmd-16-211-2023,https://doi.org/10.5194/gmd-16-211-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The current manuscript describes the configuration and evaluation of the Moana Ocean Hindcast, a...
Share