Preprints
https://doi.org/10.5194/egusphere-2022-364
https://doi.org/10.5194/egusphere-2022-364
29 Sep 2022
 | 29 Sep 2022

Burned Area and Carbon Emissions Across Northwestern Boreal North America from 2001–2019

Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers

Abstract. Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned area detection algorithm between 2001–2019 across Alaska and Canada at 500 meters (m) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned area estimates. Using this new burned area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely-sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37 million hectares (Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 +/- 27.96 (+/- 1 standard deviation) Teragrams of carbon (C) per year, with a mean combustion rate of 3.13 +/- 1.17 kilograms C m-2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger fire years and later season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion data sets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local to continental-scale applications of boreal fire science.

Journal article(s) based on this preprint

14 Jul 2023
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023,https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary

Stefano Potter et al.

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-364', João Silva, 22 Dec 2022
    • AC1: 'Reply on RC1', Stefano Potter, 12 Apr 2023
  • RC2: 'Comment on egusphere-2022-364', Anonymous Referee #4, 21 Feb 2023
    • AC2: 'Reply on RC2', Stefano Potter, 12 Apr 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-364', João Silva, 22 Dec 2022
    • AC1: 'Reply on RC1', Stefano Potter, 12 Apr 2023
  • RC2: 'Comment on egusphere-2022-364', Anonymous Referee #4, 21 Feb 2023
    • AC2: 'Reply on RC2', Stefano Potter, 12 Apr 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (04 May 2023) by Fang Li
ED: Reconsider after major revisions (08 May 2023) by Kirsten Thonicke (Co-editor-in-chief)
AR by Stefano Potter on behalf of the Authors (11 May 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (19 May 2023) by Renata Libonati
ED: Publish as is (01 Jun 2023) by Kirsten Thonicke (Co-editor-in-chief)
AR by Stefano Potter on behalf of the Authors (09 Jun 2023)  Manuscript 

Journal article(s) based on this preprint

14 Jul 2023
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023,https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary

Stefano Potter et al.

Viewed

Total article views: 885 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
614 252 19 885 85 10 13
  • HTML: 614
  • PDF: 252
  • XML: 19
  • Total: 885
  • Supplement: 85
  • BibTeX: 10
  • EndNote: 13
Views and downloads (calculated since 29 Sep 2022)
Cumulative views and downloads (calculated since 29 Sep 2022)

Viewed (geographical distribution)

Total article views: 872 (including HTML, PDF, and XML) Thereof 872 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 07 Oct 2023
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Here we developed a new burned area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 million hectares burned annually between 2001–2019 over the domain emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m-2. We found larger fire years were generally associated with greater mean combustion. The burned area and combustion data sets described here can be used for local to continental-scale applications of boreal fire science.