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Abstract. Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases 40 

large amounts of carbon into the atmosphere.  Burned area and carbon emissions have been increasing with 

climate change, which have the potential to alter the carbon balance and shift the region from a historic sink 

to a source.  It is therefore critically important to track the spatiotemporal changes in burned area and fire 

carbon emissions over time.  Here we developed a new burned area detection algorithm between 2001 - 

2019 across Alaska and Canada at 500 meters (m) resolution that utilizes finer-scale 30 m Landsat imagery 45 

to account for land cover unsuitable for burning. This method strictly balances omission and commission 

errors at 500 m to derive accurate landscape- and regional-scale burned area estimates. Using this new 

burned area product, we developed statistical models to predict burn depth and carbon combustion for the 

same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended 

domain. Statistical models were constrained using a database of field observations across the domain and 50 

were related to a variety of response variables including remotely-sensed indicators of fire severity, fire 

weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground 

combustion models performed best, with poorer performance for belowground combustion. We estimate 

2.37 million hectares (Mha) burned annually between 2001-2019 over the ABoVE domain (2.87 Mha 

across all of Alaska and Canada), emitting 79.3 +/- 27.96 (+/- 1 standard deviation) teragrams of carbon 55 

(C) per year, with a mean combustion rate of 3.13 +/- 1.17 kilograms C m-2. Mean combustion and burn 

depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower 

severity in the south and east. We also found larger fire years and later season burning were generally 

associated with greater mean combustion. Our estimates are generally consistent with previous efforts to 

quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; 60 

however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, 

greater availability of field observations, and improvements in modeling. The burned area and combustion 

data sets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local to 

continental-scale applications of boreal fire science. 
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1 Introduction 

Fire is the dominant disturbance agent in boreal forests (Stocks et al., 2003) and places large controls on 

ecosystem dynamics including vegetation composition and structure, nutrient cycling, permafrost, and 

carbon cycling (Bonan and Shugart, 1989; Bond-Lamberty et al., 2007; Walker et al., 2019). Fire frequency, 

intensity and burned area have been increasing in Alaskan and Canadian boreal forests over the last several 70 

decades (Hanes et al., 2018; Kasischke et al., 2010; Veraverbeke et al., 2017), and these trends are expected 

to continue throughout the 21st century due to a warmer and drier climate (Balshi et al., 2009; Boulanger et 

al., 2018; Young et al., 2017). Changes to the fire regime have been associated with more severe fires, 

which burn deeper into the organic soil profile and may be related to large fire years and seasonal timing 

of burn (Turetsky et al., 2011), although this has not been tested widely. Ultimately, changes in the fire 75 

regime have the potential to transition at least some North American boreal forests from a carbon sink to a 

source (Dieleman et al., 2020; Li et al., 2017; Walker et al., 2019, Wang et al., 2021). To better understand 

how changing boreal fire regimes influence carbon dynamics, it is critical to accurately map burned area 

and estimate resulting carbon emissions over time. 

 80 

Burned area mapping in Alaska and Canada over long time frames (> 20 years) has primarily been based 

on digitized maps of fire observations (both by hand and in recent decades using GPS, aerial imagery, and 

satellite remote sensing) from the Alaska Large Fire Database (ALFD; Kasischke et al., 2002), the Canadian 

National Fire Database (CNFD; Amiro et al., 2001; Stocks et al., 2003), and more recently the Canadian 

National Burned Area Composite (NBAC; Hall et al., 2020). These databases are updated annually in 85 

Alaska and Canada, yet substantial uncertainty remains, particularly as the databases go further back in 

time and aerial and satellite imagery was less prevalent. Of particular importance is the possibility of 

commission errors because the databases do not typically account for unburned patches of vegetation and 

water bodies within the fire perimeters, leading to an overestimation of burned area (Skakun et al., 2021). 

At the same time, the databases are more likely to omit fires due to lost records or missed detections in 90 
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earlier decades (Kasischke et al., 2002; Stocks et al., 2003), leading to omissions. Mapping fire perimeters 

in recent decades has improved with the use of satellite remote sensing, particularly from 30 meter (m) 

Landsat (Epp and Lanoville, 1996) and 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) 

imagery. While MODIS imagery is at coarser resolution than Landsat, its multiple acquisitions per day are 

highly amenable to burned area mapping, although there are known omission errors due to small (< 100 ha) 95 

burns as well as an overestimation of burned area at the pixel-level due to the relatively coarse 500 m 

resolution, which misses some unburned vegetation patches and water bodies (Giglio et al., 2018). Landsat 

imagery can largely bypass these issues of spatial resolution (Guindon et al., 2018; Walker et al., 2018), 

but the relatively infrequent overpass times and typical cloudy environments in the tundra and boreal biome 

result in data gaps, particularly prior to the launch of Landsat 7 (1999) due to data relay issues and limited 100 

tasking. 

 

Traditionally, carbon emissions from wildfires have been calculated as a function of burned area, fuel 

consumption and emission factors (French et al., 2011; Seiler and Crutzen, 1980). Carbon emissions in 

these models are based on observed relationships between fuel consumption, fire weather, and fuel type. 105 

Current models that are built with this framework include the Wildland Fire Emissions Information System 

(WFEIS; French et al., 2011, 2014), the Fire Inventory from NCAR (FINN; Wiedinmyer et al., 2011) and 

the Global Fire Emission Database (GFED; van der Werf et al., 2017). In addition to these regional and 

global products, there are several model products that provide estimates in boreal ecosystems of Alaska 

(French et al., 2002; Kasischke & Hoy, 2012; Tan et al., 2007; Veraverbeke et al., 2015) and Canada (Amiro 110 

et al., 2001; de Groot et al., 2007). Researchers have also made improvements to process-based models’ 

representation of fire occurrence and effects (Hantson et al., 2016; Rabin et al., 2017; Zhao et al., 2021). 

These models can be used to explore causal relationships and have the benefit of estimating how burn rates 

and carbon emissions may vary under differing future climate change scenarios.  

 115 
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In addition to simple empirical and process-based models of carbon combustion, several recent studies have 

implemented statistical techniques to model combustion based on field observations, satellite remote 

sensing imagery, and other geospatial data (Dieleman et al., 2020; Rogers et al., 2014; Veraverbeke et al., 

2015, 2017; Walker et al., 2018). These advances are possible due to the increasing volume of field 

observations of combustion, and have the advantages of unraveling complex relationships between 120 

combustion observations and geospatial information to extrapolate over space and time. Satellite imagery 

collected both pre-fire and post-fire has been particularly useful for these techniques, (Hudak et al., 2007; 

Key and Benson, 2006). Specifically, the differenced normalized burn ratio (dNBR) combines the near and 

short-wave infrared bands obtained before and after a fire, and the spectral information retained is sensitive 

to reductions in vegetation and moisture content post-fire. Due to these qualities dNBR correlates relatively 125 

strongly with aboveground biomass loss, but there have been conflicting findings on the strength of the 

relationship with belowground fire severity, which are particularly important in boreal ecosystems 

(Kasischke and Hoy, 2012; McGuire et al., 2009). Additional environmental predictors have been combined 

with dNBR to statistically model above and belowground combustion across Alaska and Canada, including 

quantified uncertainties (Dieleman et al., 2020; Rogers et al., 2014; Veraverbeke et al., 2015, 2017; Walker 130 

et al., 2018). Veraverbeke (2015) found topographic variables (elevation, slope, northness), pre-fire 

vegetation cover (% tree cover) and day of burning to be important predictors for both aboveground and 

belowground combustion, and more specifically the combination of dNBR, day of burning, elevation and 

tree cover to be the most informative in Alaska. Walker (2018) considered 71 variables associated with 

topography, permafrost condition, fire severity, fire weather and soil properties, and found that dNBR, 135 

change in pre- and post-fire tree cover, terrain ruggedness, topographic wetness, percent black spruce and 

percent sand were the most informative for the 2014 Northwest Territories fires. Although these results 

have been encouraging, extrapolations have been limited to specific regions in Canada and Alaska, and 

often to specific fire years. It is likely that the inclusion of additional field data across a more representative 

selection of field locations in Alaska and Canada would improve model fits and allow for extrapolation 140 

over a larger domain and longer time periods. 



 6 

 

 

In this study we first derived a new 500 m burned area product for all of Alaska and Canada during 2001-

2019. Our approach builds on previous satellite-based burned area mapping efforts (Chen et al., 2020; 145 

Dieleman et al., 2020; Loboda et al., 2018; van der Werf et al., 2017; Veraverbeke et al., 2015; Walker et 

al., 2018) with 500 m MODIS data, but advances these by using 30 m Landsat imagery to both improve 

accuracy and account for the presence of unburnable land cover. Using this burned area product, along with 

a new comprehensive database of combustion observations in Alaska and central/western Canada (Walker 

et al., 2020a), we used machine learning to estimate burn depth and fire carbon emissions across the ABoVE 150 

domain. We compare our product to a suite of previous efforts, and use it to test previously hypothesized 

relationships between fire severity, annual burned area, and seasonal timing of burning.  

 

2 Methods 

2.1 Study Area 155 

The spatial domain of this study includes all of Alaska and Canada for our burned area product, and the 

Arctic Boreal Vulnerability Experiment (ABoVE) core and extended domain (hereafter the “ABoVE 

domain”; Loboda et al., 2019) for our combustion and burn depth product (Figure 1). The combustion and 

burn depth products were not derived beyond the ABoVE domain due to a lack of field observations in 

eastern Canada. The temporal domain for all products is 2001-2019. Our study area includes all natural 160 

boreal and arctic vegetation within the ABoVE domain, including boreal forests, boreal wetlands, 

grasslands, tundra, and tundra wetlands. To determine these locations we derived a vegetation mask using 

the 2005 Land Cover of North America product (250 m; CCRS, 2013; Pouliot and Latifovic, 2013; Pouliot 

et al., 2014), MODIS land cover type with International Geosphere-Biosphere Programme (IGBP) 

classification (Collection 6; year 2005; 500 m; Friedl and Sulla-Menashe, 2019), the Circumpolar Arctic 165 

Vegetation Map (CAVM; Raynolds et al., 2019) and long-term climate (1970 – 2000; ~1 km; Fick and 

Hijmans, 2017), all re-gridded to 500 m resolution on the MODIS sinusoidal projection (Figure S1). Boreal 
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vegetation was distinguished from temperate using a mean annual temperature threshold of 3°C, as 

recommended in Wolfe (1979) and implemented in Rogers et al. (2015). Pixels were designated as urban, 

crop, crop/natural vegetation mosaic, or water if they were represented as such in either the Land Cover of 170 

North America or MODIS land cover products. Pixels were designated as tundra if they were within the 

CAVM domain. 

 

 

 175 
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2.2 Field Data   

Field measurements of burn depth and combustion were derived from numerous data sources across 

different research groups that represent a major synthesis effort sponsored by the NASA ABoVE program 190 

(Boby et al., 2010; Dieleman et al., 2020;  de Groot et al., 2009; Hoy et al., 2016; Rogers et al., 2014; 

Turetsky et al., 2011; Veraverbeke et al., 2015; Walker et al., 2018). Detailed descriptions of data collection 

methods can be found in the contributing publications. All field site information was standardized and 

Figure 1. Study domain. Locations of combustion observations (red), the 
burned area product domain (light gray), and the combustion and burned 
depth product domain (dark gray).  
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aggregated into a single publicly-available database (Walker et al., 2020a), which has been used to assess 

patterns and drivers of ecosystem structure and combustion across ecoregions (Walker et al., 2020b; Walker 195 

et al., 2020c). Although the field database only includes measurements from boreal ecosystems, our 

combustion and burn depth predictions include both boreal and tundra ecosystems.  Of all the pixels for 

which we predicted combustion and burn depth, only 0.78% are in tundra landscapes.  

 

2.3 Burned Area Mapping 200 

The ABoVE Fire Emissions Database (ABoVE-FED) burned area product is derived from a dNBR 

thresholding approach, which has previously been successfully employed for burned area mapping in the 

region (Rogers et al., 2014; Veraverbeke et al., 2015; Walker et al., 2018). Our primary approach was to 

use Landsat imagery to separate burned from unburned pixels at 30 m. However, because Landsat imagery 

was not available for all regions and time periods, we used MODIS imagery to map burned pixels when 205 

necessary, and upscaled our Landsat-based product to 500 m MODIS resolution. More specifically we used 

pre- and post-fire near infrared (NIR) and shortwave infrared (SWIR) bands from Aqua (MYD09GA 

Collection 6; Vermote, 2015a) Terra (MOD09GA Collection 6; Vermote, 2015b) and Landsat 5-8, 

calculating dNBR as the difference in pre fire normalized burn ratio (NBR) and post fire NBR, where NBR 

is near infrared minus shortwave infrared divided by near infrared plus shortwave infrared. 210 

 

 This approach had the added advantage of accuracy; whereas a Landsat dNBR threshold tends to be 

surpassed at the site level in a diffuse manner across the landscape, due to stochastic site-level disturbances 

such as tree mortality, herbivory, flooding, or small-scale dieback, it is much less common for these small-

scale disturbances to influence the majority of a 500 m pixel. We also minimized mapping non-fire 215 

disturbances by following the approach of Veraverbeke et al. (2015) and applying our dNBR approach to 

(1) mapped fire polygons from the ALFD and CNFD (93% of total burned pixels; hereafter collectively 

referred to as the National Large Fire Databases (NLFD)) and (2) MODIS active fire (MOD14A1 Collection 

6 and MYD14A1 Collection 6; Giglio et al., 2018) acquisitions outside these polygons (7% of total burned 
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pixels). In each case we applied a 1 km buffer (Veraverbeke et al., 2015) to capture burned pixels 220 

immediately outside these areas. Finally, our approach is motivated by a desire to balance commission and 

omission errors at both the 30 m and 500 m scales, thereby providing an unbiased estimate of total burned 

area.  

 

To map 30 m burned pixels, we first extracted dNBR at both burned and unburned control sites in our 225 

aggregated field database using available cloud-free Landsat 5, 7 and 8 Tier 1 surface reflectance images 

in Google Earth Engine (Gorelick et al., 2017). Landsat 5 and 7 were atmospherically corrected using the 

Landsat Ecosystem disturbance adaptive processing system (LEDPAS; Schmidt et al., 2013) while Landsat 

8 was atmospherically corrected using Land Surface Reflectance Code (LaSRC; Vermote et al., 2016). Pre- 

and post-fire normalized burn ratio (NBR) was calculated as the mean of all available Landsat observations 230 

between July and August. Pre-fire values were extracted one year before a given fire, and post-fire values 

were extracted one year after a fire. We then selected a 30 m Landsat dNBR threshold that most effectively 

separated burned and unburned control sites. Because there are many fewer unburned control sites in the 

Walker et al (2020a) combustion database, we derived additional control sites by extracting dNBR at burned 

sites two years before a given fire, which had the advantage of controlling for any site-level spectral 235 

differences between burned and control sites represented in the database. This process generated a dNBR 

threshold of 0.084, which minimized 30 m site-level commission and omission errors to 6.6% (Figure S2). 

 

We then created a mask at 30 m to account for unburnable land cover (i.e., non-vegetated pixels). This was 

created using two sources: the Joint Research Center’s yearly water history product (Pekel et al., 2016) and 240 

the North American Land Change Monitoring System’s (NALCM) 2010 land cover product at 30 m 

resolution (Latifovic et al., 2012).  The first product allowed us to capture transient water pixels in our time 

series while the NALCM land cover product classified each pixel into 19 different land cover classes, from 

which we masked out non-vegetated pixels including ice, water, barren and cropland. These two sources 

were combined into separate masks for each year between 2001-2019. Because areas that burned in 2010 245 
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were often classified as barren lands in the 2010 NALCM product, we considered barren lands as vegetated 

in our mask for the year 2010. 

 

Using the vegetation mask and the dNBR threshold, we created a binary burned/unburned 30 m Landsat 

product and upscaled this to the native MODIS 500 m resolution and projection. To determine whether or 250 

not a given 500 m pixel was classified as burned or unburned, we calculated the percentage of 30 m 

vegetated pixels that burned within its footprint.  If more than 50% of the 30 m vegetated pixels within the 

larger 500 m pixel burned (i.e., were tripped by the dNBR threshold), the entire pixel was assigned as 

burned, and the burned fraction was calculated as the percent of the burnable land cover (vegetation) in the 

500 m pixel. Note we did not use the percent of burned 30 m pixels to determine burn fraction within a 255 

given 500 m pixel, primarily because of limitations imposed by frequently missing Landsat imagery 

(detailed below).  

 

We used this approach whenever 500 m pixels contained 100% coverage by Landsat imagery at 30 m. 

When, however, there was less than 100% Landsat coverage, we needed to determine if it was more accurate 260 

to classify 500 m pixels using Landsat (with partial coverage) or MODIS Collection 6 imagery (Vermote, 

2015a, Vermote, 2015b). To do so, we analyzed all MODIS pixels with complete Landsat coverage and 

masked out increasing numbers of Landsat pixel strips within the larger MODIS footprint (using increments 

of 5%). After each removal of Landsat pixels, we compared the accuracy of the resulting burned/unburned 

classification using (i) Landsat imagery with partial coverage and (ii) MODIS imagery. This procedure 265 

suggested that using MODIS dNBR was more accurate than Landsat when less than 85% of a 500 m 

MODIS pixel was covered by Landsat imagery. We therefore used Landsat to classify burned pixels when 

at least 85% of a 500 m pixel was covered by Landsat imagery, and otherwise used MODIS. Burned pixels 

were assigned a quality flag of zero when there was complete Landsat coverage, a quality flag of one when 

Landsat coverage was less than 100% but greater than 85%, and a quality flag of two when Landsat 270 

coverage was less than 85% and therefore MODIS imagery was used to classify burn status.  Overall, 81% 
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of total burned pixels were derived using Landsat (66% from full coverage and 15% from partial coverage), 

although particular regions (notably Alaska and Newfoundland and Labrador) tend to rely more on MODIS 

due to more limited availability of Landsat imagery (Figure S3). 

 275 

We developed a correction factor for MODIS-based dNBR to account for differences between Landsat and 

MODIS NIR and SWIR spectra, as well as the influence of vegetation fraction on 500 m dNBR signals. To 

do so, we calculated pre- and post-fire NIR and SWIR bands from MODIS and Landsat (resampled to 500 

m) for a 50% random sample of burned pixels. We then differenced the Landsat 500 m resampled bands 

from the 500 m MODIS bands and regressed them onto vegetation fraction to obtain a correction factor. 280 

The regression yielded an R2 of 0.74 and an equation of 𝑦 = 0.94𝑥 + 0.01, which was applied to all pixels 

where burn status was classified by MODIS. We then calculated a new dNBR threshold to classify pixels 

at 500 m in an unbiased manner. To do so, we determined the MODIS dNBR threshold that evenly split 

omissions and commissions based on pixels mapped with complete Landsat coverage.  This threshold was 

determined to be 0.0725, resulting in an omission/commission error of 14.2% at 500 m when using MODIS.   285 

 

One issue with a burned area mapping approach such as ours that utilizes post-fire imagery one year after 

a fire is that it is difficult to determine the year(s) of burn where overlapping burns occurred in successive 

years. To address these cases, we created a seasonal MODIS-based product following the methodology of 

Giglio et al. (2018). The dNBR for each day between January 15th and December 15th was calculated using 290 

the 30 preceding days as pre-fire NBR and the 30 days after as post-fire NBR. Any pixels with less than 10 

valid observations in either window were masked out. We used a similar thresholding approach to that 

described above for mapping burned pixels with MODIS, resulting in a seasonal dNBR threshold of 0.23. 

Any pixel mapped using the MODIS seasonal approach was assigned a quality flag of three.  

 295 

In addition to determining fire locations, fire year, and the burned fraction, we also determined the day of 

burning for each pixel. When possible, day of burn was taken directly from the thermal anomaly active fire 
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detections from MOD14A1 Collection 6 and MYD14A1 Collection 6 (Giglio et al., 2018) active fire 

products. Where an active fire was registered, day of burn was assigned by taking the earliest active fire 

acquisition during the year. When an active fire was not registered for a given burned pixel, we utilized a 300 

multi-tiered approach to assign day of burn. When possible, we used a kriging technique to interpolate day 

of burn using the active fire detections within each fire polygon in the NLFD following Veraverbeke et al. 

(2015). To implement this, we required fire polygons to contain at least five active fire acquisitions within 

their boundaries and have some level of temporal variation (i.e., not all active fire acquisitions on the same 

day). When this was not the case, day of burn was assigned using the closest active fire pixel. Finally, when 305 

no active fire acquisitions were associated with a given fire polygon, we used our MODIS-based seasonal 

mapping approach to determine day of burn by locating the day of maximal dNBR within a given year. For 

fires that were detected by MODIS thermal anomalies but were not contained in the NLFD (7% of all 

burned area), we created our own polygons around the burned pixels (by converting pixels to vectors and 

buffering them) and used the same method to assign day of burn. Quality flags for our burn day product 310 

represent this tiered approach, with a flag of zero for pixels with direct active fire hits, a flag of one for 

pixels whose day of burn was determined by interpolation, and a flag of two for pixels whose day of burn 

was determined using the MODIS seasonal burned area product. A simplified flowchart of burned area 

processing methods is shown in Figure S4. 

 315 

We compared ABoVE-FED burned area to several other products including the NLFD, NBAC, MCD64A1 

Collection 5, MCD64A1 Collection 6, the Alaska Fire Emissions Database version 2 (AKFED; 

Veraverbeke et al., 2017), GFED4s (van der Werf et al., 2017), a 500 m model by van Wees et al. 2022, 

and the Fire Model Intercomparison Project (FireMIP; Hantson et al., 2016; Rabin et al., 2017; Table S1). 

NBAC is a Canada-only product and is related to the CNFD, but improves upon it by incorporating multi-320 

sensor remote sensing imagery (including Landsat) to account for water bodies and unburned vegetation 

patches. FireMIP includes simulations performed by coupled fire-vegetation models forced with a 

standardized set of input data. We also visually compared our product and others to high-resolution imagery 



 13 

of fires from the Worldview 2 (1.84 m) satellite, available through DigitalGlobe, Inc., a Maxar Company 

under the Nextview license agreement through the National Geospatial Intelligence Agency (Neigh et al., 325 

2013). 

 

2.4 Combustion and Burn Depth Models 

We built and applied statistical models of aboveground combustion, belowground combustion, and burn 

depth to every mapped burned pixel in the ABoVE domain based on field observations across Alaska and 330 

western Canada (Walker et al., 2020a). Because not all field sites included estimates of both above- and 

belowground combustion, we created two separate combustion models, one utilizing all available 

aboveground combustion measurements (n = 515) and one utilizing all available belowground combustion 

measurements (n = 769). Our burn depth model utilized the same field sites as belowground combustion. 

Further discussion of models implemented can be found in the Supplement. 335 

 

2.4.1 Predictor variables 

Combustion and burn depth measurements from Walker et al. (2020a) were related to a variety of spatial 

predictors including remotely sensed indicators of fire severity, topography, soils, climate and fire weather. 

We initially acquired 75 covariates associated with environmental conditions such as long-term climate, 340 

fire weather, topography, vegetation type, soil type, remotely sensed vegetation indices (e.g. normalized 

difference vegetation index; NDVI; Tucker, 1979) and permafrost condition (Table S2). 

 

2.4.2 Climate Variables 

Long-term climate was acquired from ClimateNA (CNA; Wang et al., 2016; Table S2), which provides 345 

point estimates of mean climate from 1981 – 2010 based on the Climate Research Unit (CRU; Mitchell and 

Jones, 2005). ClimateNA uses finer-resolution PRISM (Daly et al., 2002, 2008) and ANUSPLIN 

(Hutchinson, 1989) climate normals to downscale coarse-resolution monthly climate data to a 4 × 4 km 

grid, followed by bilinear interpolation and a locally-derived elevation adjustment to estimate point data. 
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CNA variables were represented as both annual and summer means (June – August), and were included to 350 

capture the influence of long-term climate on vegetation, fuel loads, and fuel moisture that drive combustion 

(Walker, et al., 2020b).  

 

2.4.3 Fire Weather Indices 

Fire weather indices (FWIs) represent the meteorology at the timing of fire occurrence and have been 355 

associated with fire behavior and carbon emissions due to their influence on fuel moisture and fire spread 

(e.g. Di Giuseppe et al., 2018; French et al., 2011; Ivanova et al., 2011; Veraverbeke et al., 2017). We 

acquired FWIs from the Global Fire Weather Emissions Database (GFWED v2.0; Field et al., 2015) at 0.5° 

× 0.66° resolution. FWI information was extracted for the day of burn for all fires in the field database. 

Since FWI data were not available for all burned pixels in our fire product due to missing data in the 360 

shoulder seasons, we developed two versions of our aboveground combustion, belowground combustion, 

and burn depth models: a primary model that included FWIs in training and a secondary one that did not. 

Mapped pixels from the primary model were assigned a quality flag of zero, and pixels from the secondary 

model were assigned a flag of one. Of the 2,123,730 pixels that burned between 2001 – 2019, 4.4% did not 

have FWI data available and necessitated the use of these secondary models.  365 

 

2.4.4 Environmental Variables 

We acquired a variety of environmental covariates related to soils, topography, vegetation type, and 

permafrost occurrence (Table S2). Soil properties were taken from SoilGrids at 250 m resolution (Hengl et 

al., 2017), including percent clay (0 – 2 µm), silt (2 – 50 µm), sand (50 – 2000 µm), coarse material ( > 370 

2000 µm), bulk density (g cm-3), soil organic carbon stock (tons ha-1), and soil water pH. We integrated all 

variables across the top 30 cm of the soil profile. 

 

Topographic variables, including elevation (m), aspect (°), and slope (°), were derived from a 10-meter 

digital elevation model (DEM) of the ABoVE domain which, in turn, was derived from a higher resolution 375 
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Arctic DEM (Porter et al. 2018) and gap-filled with additional DEM datasets (Burns et al., forthcoming).  

This 10 m DEM was resampled to 500 m and then aspect and slope were both calculated as the local 

gradient of the four connected neighbors of each pixel. After resampling to 500 m we also calculated a 

topographic wetness index (TWI) for each pixel that represents soil drainage patterns based on the slope 

and upslope area draining through a particular point (Beven & Kirkby, 1979).  380 

 

Vegetation type was represented by the percent cover over seven broad classes including black spruce 

(Picea mariana), white spruce (Picea glauca), jack pine (Pinus banksiana), deciduous broadleaf species, 

other conifers, grasslands and non-vegetated (Beaudoin et al., 2014; Ottmar et al., 2007). We use pre-fire 

tree cover (Sexton et al., 2013) from either 2000, 2005, 2010, or 2015, depending on fire year.  385 

 Lastly, we acquired a permafrost zonation and a surface roughness index, which is a measure of terrain 

complexity (Gruber, 2012).   

 

2.4.5 Remotely Sensed Variables 

We derived numerous remotely-sensed vegetation indices from Landsat, including the NDVI, the 390 

normalized difference infrared index (NDII; Hardinsky & Smart, 1983), dNBR (Key and Benson, 2006), 

the relative difference normalized burn ratio (RdNBR; Miller and Thode, 2007), the relativized burn ratio 

(RBR; Parks et al., 2014), tasseled cap greenness, wetness and brightness (Kauth and Thomas, 1976), and 

pre-fire tree cover (Sexton et al., 2013). NDVI, NDII, and tasseled cap indices were acquired as a mean 

composite between May 15th and June 15th in the post-fire years, while dNBR, RdNBR and RBR were 395 

based on mean composites between June 1st and August 31st for both the pre- and post-fire years.   

 

For model training all remotely sensed variables were extracted from Landsat 5-8 Tier 1 surface reflectance 

at 30 m with clouds, cloud shadows and snow masked out using the C Function of Mask (CFMask; Foga 

et al., 2017).  We applied corrections due to spectral differences between Landsat 8 and 7 using a regression 400 

technique (Roy et al., 2016). Although our model was trained with Landsat imagery at 30 m, we predicted 
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combustion and burn depth at 500 m across the domain using MODIS imagery. All MODIS variables were 

extracted in Google Earth Engine at ideal MODIS quality flags (bit flag of 0). We then implemented a 

correction factor to account for sensor and spatial scaling issues in model predictions (section 2.4.7). 

 405 

2.4.6 Feature Selection and Model Comparisons 

We reduced our initial 75 covariates to an optimal number using recursive feature elimination (Guyon et 

al., 2002). Recursive feature elimination iteratively removes variables until a desired number remains, 

which in this case is defined by the number of covariates necessary to achieve the minimum root mean 

square error (RMSE). Recursive feature elimination achieves this by fitting a secondary machine learning 410 

model that can rank features by importance and discards the least important ones at each iteration. We used 

random forest (Breiman, 2001) as the measure of importance, and repeated our recursive feature elimination 

three times across a five-fold cross-validation to determine the optimal subset of covariates (Table S2).  For 

the primary aboveground combustion, belowground combustion, and burn depth models, the optimal 

number of variables was 15, 45, and 40 (Figure S5), respectively, and for the secondary models the optimal 415 

number of variables was 15, 64, and 48. While it is possible a similar RMSE could have been achieved with 

reduced model complexity (reduced number of variables), we chose to directly use RMSE reduction as our 

threshold for feature selection.  

 

We then tested a suite of statistical models across the selected feature space to compare predictive power. 420 

For each model, we searched for optimal model parameters using a 10-fold cross-validation repeated three 

times and a random search grid of length 10 (e.g. for any given model parameter, 10 random numbers were 

selected per parameter and tested for each parameter combination). After optimizing model parameters, we 

compared final model fits with a 10-fold cross-validation repeated 100 times. After comparing the median 

R2 for each model across these 1,000 iterations, we selected the best performing model and chose it for the 425 

final model implementation. All model training took place in R (R Core Development Team, 2021). In all 
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cases the best performing model was a ranger random forest, although there were differences in the optimal 

parameters chosen (Table S3). 

 

2.4.7 Spatial Scaling 430 

Our combustion and burn depth models were developed using site-level data (most plots utilized a 30 × 30 

m design) and geospatial predictors at their native resolution, including a variety of 30 m Landsat indices. 

However, our spatial model was applied at 500 m to match the resolution of our burned area product, 

ultimately because missing imagery prevented comprehensive burned area mapping at 30 m. To explore 

potential issues associated with implementing the model at these different spatial scales, we randomly 435 

sampled two hundred 500 m pixels from each year in 2004, 2006, 2012, 2014 and 2015, for a total of 1,000 

pixels. We then implemented our combustion and burn depth models at both 30 m and 500 m to assess 

biases and errors introduced by both spatial and sensor differences. When models were assessed at 30 m, 

all predictor variables were acquired at their native resolutions (Table S2); when models were assessed at 

500 m, all variables were resampled to 500 m. Any variables described in section 2.4.5 that were derived 440 

from Landsat were instead collected at 500 m from MODIS (using MOD09A1 Collection 6 and MYD09A1 

Collection 6). We used MODIS provided quality flags to select for pixels that were corrected at ideal quality 

and masked out clouds and snow. All other variables were resampled to 500 m using bilinear interpolation 

if native resolution was >500 m, and using mean values within pixel boundaries if native resolution was 

<500 m. We then compared the predictions at 500 m resolution to the mean across all the 30 m sub pixels, 445 

and built type 2 linear regression models to correct for potential biases. The coefficients from these models 

were then used to adjust the final predictions for the combustion models across the full domain.  

 

2.4.8 Combustion and Burned Depth Predictions and Quality Flags 

Predictor variables for all burn pixels across the domain were collected in Google Earth Engine. Since the 450 

ideal MODIS quality flag criteria (section 2.4.5) left 0.31% of the total burned pixels missing, we collected 

predictors for these pixels with no MODIS quality flag applied, and assigned our own quality flag to 
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distinguish these samples. We provide four separate quality flags indicating whether our primary or 

secondary models (no FWIs) were implemented, and whether MODIS quality flags were applied.  Our four 

flags have the following associations: Flag one – primary model with MODIS quality flag criteria (95.32 455 

% of pixels); Flag two - primary model with no MODIS quality flag criteria (0.26 % of pixels); Flag three 

– secondary model with MODIS quality flag criteria (4.37 % of pixels); Flag four - secondary model with 

no MODIS quality flag criteria (0.05% of pixels).  

 

 460 

2.4.9 Monte Carlo Analysis 

To derive a measure of prediction uncertainty, we implemented a Monte Carlo analysis with 500 

simulations that incorporated uncertainty from both the field-measured combustion and the random forest 

models. Our approach was based on techniques implemented in Rogers et al. (2014), Veraverbeke et al. 

(2015), Walker et al. (2018), and Dieleman et al. (2020). To account for uncertainty in field estimates of 465 

belowground combustion, we used the standard error of observed site-level combustion when it was 

available. In total, 271 field sites recorded standard error:  22 in Alaska, 47 in Saskatchewan, and 202 in 

the Northwest Territories. Standard error was estimated for both aboveground and belowground combustion 

in Alaska and Saskatchewan, and only for belowground in the Northwest Territories. For each Monte Carlo 

simulation, we derived an adjustment factor by multiplying a site’s standard error by a random number 470 

from a normal distribution with a standard deviation of one and centered around zero. This resulting number 

was then added to the measured combustion. 

 

Uncertainty in aboveground combustion in the Northwest Territories was calculated by first creating a 

random bias for the percent carbon content of trees (central estimate of 0.5), which varied randomly within 475 

a normal distribution with 3% standard deviation systematically across all trees measured for each Monte 

Carlo simulation (based on Rogers et al., 2014). We similarly included a 20% error in visual estimates of 

tree consumption (Dieleman et al., 2020; French, 2004; Walker et al., 2018), which also varied 
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systematically across all trees measured. Aboveground combustion in each simulation was then altered 

using these adjustment terms (adding the carbon fraction adjuster and multiplying the tree consumption 480 

adjuster). 

 

Since these procedures only accounted for uncertainty of 271 of the possible samples, uncertainty for the 

remaining 245 aboveground and 499 belowground samples was derived using an alternate approach. To do 

so, we first linearly regressed the aboveground and belowground combustion standard error derived from 485 

Monte Carlo simulations against measured aboveground and belowground combustion, respectively.  The 

coefficients from these two separate models were then used to predict the standard errors for all remaining 

samples (Figure S6).  

 

In addition to uncertainty in field measurements, there is also uncertainty in the random forest model used 490 

to predict combustion across the ABoVE domain. To account for this, we leveraged the fact that model 

residual errors tended to increase in proportion to combustion level, similar to Rogers et al. (2014) and 

Dieleman et al. (2020). To estimate this relationship, we split the original model predictions (from the 10-

fold cross-validation repeated 100 times) into 15 bins based on quantiles of total combustion, and then 

calculated the standard deviation of the residual error within each bin. We then used a general additive 495 

model to smooth the standard deviation of the residuals across the bins (Figure S7). For each of the 500 

Monte Carlo simulations using adjusted field estimates of combustion (derived from procedures described 

above), new random forest model predictions were assigned a standard error based on total combustion 

using the smoothed relationship. These standard errors were then multiplied by a random bias factor with 

a standard deviation of one centered around zero, which was then added back onto the combustion 500 

predictions to derive a final uncertainty estimate for each predicted combustion pixel across the ABoVE 

domain. 
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We quantified uncertainty in our predictions in three ways: 1) pixel-level uncertainty, 2) uncertainty in 505 

mean combustion and 3) uncertainty in total emissions for a given region of interest. In each case, 

uncertainties derived from the Monte Carlo simulations were adjusted by the ratios of mean combustion 

from the primary model to that of the Monte Carlo simulations in order to account for different mean 

combustion levels, and hence emissions, between the models (which were minor). 1) Pixel-level uncertainty 

was calculated as the standard error of combustion for a given pixel across the Monte Carlo simulations. 2) 510 

Uncertainty in mean combustion for a given region was calculated as the standard error of mean combustion 

across the 500 Monte Carlo simulations for that region. In this case note that mean combustion was 

calculated by weighting pixels by their vegetated (burned) fractions.  3) Uncertainty in total emissions for 

a given a region of interest was calculated as the standard error of total emissions for that region across the 

500 Monte Carlo simulations. A simplified flow chart of the combustion/burned depth modeling 515 

methodology is shown in Figure S8.  

 

 

2.5 Relationships between belowground fire severity, annual burned area, and timing of burn 

Turetsky et al. (2011) discovered a positive relationship between burn depth, annual burned area, and timing 520 

of burn (day of year) in black spruce forests and peatlands of interior Alaska, and also noted the influence 

of burn timing was more important in small fire years. To test if these relationships held true with a larger 

field database in Alaska (n = 286 for ABoVE-FED compared to n = 178 in Turetsky et al. (2011)), we 

performed a multiple regression of burn depth and belowground combustion using annual burned area and 

day of year as predictor variables. We also tested how burn depth and belowground combustion varied as 525 

a function of day of year within both small and large fire years. To do so, we split the field sites in Alaska 

into four quantiles based on annual burned area and then regressed burn depth and belowground combustion 

against day of year within each quantile. We also conducted this analysis using a sample of 500 ABoVE-

FED pixels in Alaska instead of field observations, and then repeated both of these analyses using all 

available field observations and 500 random pixels within the broader ABoVE domain. In each case, we 530 
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sampled 500 pixels instead of using all available pixels to minimize the effect of large sample sizes on p-

values.   

 

3 Results 

3.1 Burned Area  535 

Temporally there was high variability in burned area year to year (Figure 2a). Across the domain, ABoVE-

FED reported similar burned area totals compared to the NLFD (average of 2.87 Mha y-1 for ABoVE-FED 

compared to 2.90 Mha y-1 for NLFD; Figure 3), although there was variability in this relationship (NLFD 

estimated larger annual burned area in 11 years and smaller burned area in eight years between 2001-2019). 

This was the net result of two contrasting patterns: ABoVE-FED tended to report less burned area within 540 

mapped polygons, due to unmapped unburned patches and unburnable land cover (e.g., small water bodies) 

in the government fire databases, but detected additional burned areas associated with MODIS active fire 

acquisitions well outside mapped fire polygons (7% of total burned area in ABoVE-FED; 6% of total 

emissions; Figure S9). The state/territory with the most burned area detected outside the mapped polygons 

was British Columbia (31% of the 7% total burned area mapped outside NLFD polygons; Figure S9). 545 

Exploratory analysis revealed this was likely as a result of commission errors due to logging (i.e., logged 

areas tripping dNBR thresholds in conjunction with small fires registered by MODIS active fire hits). 

Across the domain, the mean fire size coincident with NLFD polygons was much larger (4,954 ha) than the 

mean fire size outside the polygons (166 ha). Because the NBAC product accounts for more of these 

unburned patches within polygons (Hall et al., 2020), it tended to report lower total burned area compared 550 

to ABoVE-FED (Figure S10). ABoVE-FED burned area was higher than MCD64A1 (Collection 5 and 6; 

Figure 3) in all years, which is consistent with known omissions in these global products for boreal North 

America (Giglio et al., 2018; Randerson et al., 2012; Figure S11). These large-scale patterns were 

corroborated by high-resolution imagery of particular fire events (Figure 4; Figure S12-S19). ABoVE-FED 

identified more burned pixels than MCD64A1 Collection 6 by being more sensitive to fire-induced spectral 555 

changes, but also accounted for unburnable portions of the landscape (Figure S20). GFED4s burned area 
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was slightly higher (Figure S21; average of 2.38 Mha y-1 during 2001-2016)  than both MODIS products 

(Figure 3 ; average of 2.93 Mha y-1 during 2001-2016), but lower than the NLFD and ABoVE-FED (Figure 

3). The MCD64A1 Collection 5, Collection 6 and GFED4s databases underestimated burned area by 32, 

23, and 18% compared to ABoVE-FED, respectively.  560 
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Figure 2. Temporal variability in ABoVE-FED burned area (a), and emissions (b) from 2001-
2019.  
 



 23 

 

 

 585 

 

 

 

 

 590 

 

 

 

 

 595 

 

 

 

 

 600 

 

 

 

 

 605 

 

 

 

Figure 3. Comparison of ABoVE-FED burned area across Canada and Alaska to MODIS 
MCD64A1 Collection 5 (C5), MCD64A1 Collection 6 (C6), and the Alaskan and Canadian 
National Fire Databases (NFDB).  
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Figure 4. Comparison of high-resolution imagery and burned area 
products for a fire in Manitoba in 2014 (a). Panels show Worldview-2 
imagery (b, fire shown in purple shades), ABoVE-FED (c), MODIS 
Colllection 6 (d), MODIS Collection 5 (e), and the Canadian National 
Fire Database (f).  
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 635 

ABoVE-FED burned area was similar to AKFED where it is available (Alaska, the Northwest Territories 

and the Yukon Territory; Figure S22 ; average of 1.27 Mha y-1 for ABoVE-FED during 2001 – 2015 

compared to 1.22 Mha y-1 for AKFED). All models participating in FireMIP simulated lower burned area 

than ABoVE-FED, and with a very high level of variability between models (1.34 ± 0.83 Mha y-1 across 

Alaska and Canada during 2001 – 2012; Figure S23a).  640 

 

Burned area was highly variable interannually, with the largest fire years occurring in 2004 in Alaska and 

the Yukon Territory; 2015 in Alaska, Saskatchewan, and Alberta; 2014 in the Northwest Territories; and 

2013 in Manitoba and Quebec (Figure S21, S24). Across states, provinces, and territories, total burned area 

was highest in Alaska, the Northwest Territories and Saskatchewan. A total of 54 Mha burned across Alaska 645 

and Canada during all years, and 45 Mha in the ABoVE domain, with an annual mean of 2.87 Mha y-1 

across Alaska and Canada and 2.37 Mha y-1 in the ABoVE domain. 

 

Spatially ABoVE-FED estimated the most burned area in in Alaska, the Northwest Territories and 

Saskatchewan (Figure 5a; Figure S21, Figure S24) 650 

 

 

 

 

 655 

 

 

 

 

 660 



 26 

 

 

 

 

 665 

 

 

 

 

 670 

 

 

 

 

 675 

 

 

 

 

 680 

 

 

 

 

 685 

 

Figure 5. Total burned area (a), total carbon emissions (b), mean combustion (c), and mean 
burn depth (d) between 2001-2019 aggregated to a 70 km grid. Note that burned area (a) 
covers all of Alaska and Canada, whereas all other metrics cover the ABoVE extended 
domain.   
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3.2 Combustion and Burn Depth Models  

Our aboveground and belowground combustion models performed well, although the aboveground model 

performed significantly better across the suite of models examined (Figure 6a,b). A ranger random forest 690 

model (Wright and Ziegler, 2017) performed best for aboveground and belowground combustion, with 

median R2 of 0.46 and 0.25, respectively, across the 10-fold cross validation repeated 100 times. Our 

secondary models that did not include information on FWIs (section 2.4.3) performed similarly to our 

primary models, with R2 values for above and belowground combustion of 0.45 and 0.24, respectively. 

Although both the aboveground and belowground models performed reasonably well at predicting lower 695 

and moderate combustion values, which includes the majority of field observations, they both struggled to 

predict larger combustion values (Figure S25a,b). The burn depth model performed better than both 

combustion models, with a median R2 of 0.53 using a ranger random forest model (Figure 6c).  
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Figure 6. Comparison of the spread and median R2 values across a 10-fold cross validation repeated 
100 times for our aboveground combustion (a), belowground combustion (b), and burn depth (c) 
models.  Models compared include a ranger random forest (ranger), a quantile random forest (quantile 
), radial support vector machines (svmradial), polynomial support vector machines (svmpoly), linear 
support vector machines (svmlinear), ridge regression (ridge) and lasso regression (lasso).  
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There were notable differences in the feature importance of the aboveground and belowground models 740 

(Figure S26a,b). The aboveground model was heavily influenced by its top predictor, pre-fire tree cover, 

followed by metrics of relative humidity, with other variables including remotely-sensed fire severity and 

vegetation moisture content having significant but relatively low importance. In contrast, the belowground 

model was influenced strongly by a number of soil, terrain, climate, and tree cover variables. The most 

important features for the burn depth model were similar to the belowground model, with soil properties, 745 

tree cover and climate being the most influential (Figure S65c). Overall, the distribution of variables used 

in the training dataset and predicting dataset were similar (Figure S27), with the exception of slope. Most 

field sites were located in relatively flat terrain whereas the combustion predictions included locations with 

steeper terrain.  

 750 

Spatial patterns of mean burn depth and combustion tended to follow a gradient of higher burn depth and 

mean combustion in the western part of the ABoVE domain (Alaska, Yukon Territory, and Alberta) to 

lower mean combustion in central-western Canada (Saskatchewan, Northwest Territories, and Manitoba) 

(Figure 5c,d, Figure S28). There was, however, considerable fine-scale variability at 500 m within these 

regions (Figure 7), and spatial patterns were relatively consistent with previous combustion mapping 755 

efforts.  
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Across the ABoVE domain, 1.51 +/- 0.53 Pg C was emitted over the 2001-2019 period, with a mean of 

79.3 +/- 27.96 Tg C per year. Mean combustion across all years and regions was 3.13 +/- 1.17 kg C m-2. 785 

Pixel-level uncertainty (Figure S29) tended to follow spatial patterns of mean combustion (Figure 5c) and 

was relatively consistent across years (Figure S30), with a mean value of 2.86 kg C m-2. Seasonally, the 

majority of burned area occurred during June, July and August (Figure 8), although there were substantial 

regional differences, with some regions recording a large fraction of burned area outside this window (e.g., 

May fires in Alberta). In general, monthly patterns in emissions (Figure S31) followed patterns in burned 790 

Figure 7. Comparison of Alaskan fires in 2004 (a) for ABoVE-FED (b) and AKFED (c), the 
Northwest Territories fires in 2014 (d) for ABoVE-FED (e) and Walker et al., 2018 (f), and 
Saskatchewan fires in 2015 (g) for ABoVE-FED (h) and Dieleman et al., 2020 (i). Basemap 
Sources: Esri, Ó OpenStreetMap Contributors, HERE, Garmin, USGS, EPA, NPS, NRCran. 
  



 31 

area. Overall, combustion tended to be highest in summer compared to spring and fall fires, although this 

pattern was most pronounced in the Yukon Territory, Northwest Territories, Saskatchewan and Alaska 

(Figure S32).  
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Figure 8. Monthly burned area across states, and Canadian provinces and 
territories between 2001-2019. January, February, November and December have 
been omitted due to low fire occurrence (less than 2% of total burned area 
between 2001-2019).  
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Estimates of total carbon emissions in ABoVE-FED were similar to AKFED (Figure S22; Table S4), with 

the notable exception of 2014 in the Northwest Territories: AKFED estimated 164 Tg C and ABoVE-FED 

estimated 89.7 Tg C. This was primarily a result of differences in mean modeled combustion in the 820 

Northwest Territories 2014 fires, with AKFED exhibiting its highest mean combustion in 2014 (Figure 

S21; 4.81 kg C m-2 in AKFED compared to 2.89 kg C m-2 in ABoVE-FED).  In general, ABoVE-FED 

estimated slightly higher mean combustion levels than AKFED in Alaska (3.34 kg C m-2 in ABoVE-FED 

and 3.03 kg C m-2 in AKFED), lower combustion in the Northwest Territories (3.29 kg C m-2 in ABoVE-

FED and 3.44 kg C m-2 in AKFED), and substantially higher combustion in the Yukon Territory (3.71 kg 825 

C m-2 in ABoVE-FED and 2.26 kg C m-2 in AKFED) (Figure S22; Table S4). ABoVE-FED carbon 

emissions were relatively similar to Walker et al. (2018) for the 2014 Northwest Territories fires, and to 

Dieleman et al. (2020) for the 2015 Saskatchewan fires (Figure 7, Table S4). Total carbon emissions from 

ABoVE-FED were substantially higher than GFED4s (Figure S33), with the largest differences occurring 

in Alaska. This was primarily a function of higher mean combustion values in ABoVE-FED compared to 830 

GFED4s (Figure S34). Between 2001-2016, ABoVE-FED estimated 80 Tg C y-1 total emissions with a 

mean combustion value of 3.39 kg C m-2, and GFED4s estimated 51 Tg C y-1 total emissions with a mean 

combustion value of 2.30 kg C m-2 (Table S4). However, more recently a 500 m model by van Wees et al. 

2022 was completed and both emissions and combustion match more closely to ABoVE-FED.  Between 

2002-2019 this 500 m product estimates 73 Tg C y-1 total emissions (Figure S33) with a mean combustion 835 

value of 3.38 kg C m-2 (Figure S34). Meanwhile, between 2002-2019 ABoVE-FED estimates 83 Tg C y-1 

total emissions with a mean combustion value of 3.16 kg C m-2. Compared to GFED4s these larger emission 

and combustion estimates in the 500 m product are largely due to increased estimates of belowground 

combustion, as the van Wees et al. 2022 model is informed by the same field measurements used in ABoVE-

FED. 840 
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 Differences in combustion and carbon emissions were very large between ABoVE-FED and fire-vegetation 

models participating in FireMIP (Figure S34b). ABoVE-FED estimated much higher emissions than 

FireMIP (70.1 Tg C y-1 for ABoVE-FED during 2001-2012 compared to 4.0 Tg C y-1 for FireMIP). This is 

likely because models in FireMIP mostly combust aboveground vegetation, whereas combustion from 845 

belowground sources (primarily soil organic matter) comprises 90% of total carbon emissions in ABoVE-

FED (Figure S35) and 88% in the field plots from Walker et al. (2020a). ABoVE-FED mean aboveground 

combustion (7.84 Tg C y-1 during 2001-2012) was much more similar to FireMIP’s 4.0 Tg C y-1. 

 

We found multiple lines of evidence that belowground fire severity (burn depth and belowground 850 

combustion) is positively related to annual burned area and seasonal day of burn (Table S5; S6). In general, 

mean annual burned area had a stronger relationship with fire severity than did burn day of year using 

multiple linear regression. However, within quantiles of annual burned area (i.e., low vs. high fire years), 

day of year was strongly related to fire severity (particularly belowground combustion), and the slope of 

this relationship was generally larger in small fire years (Table S6). When assessed using domain-wide 855 

mean severity from mapped ABoVE-FED pixels, we found no significant relationship of burned depth with 

burned area or combustion (Figure S36).  

 

There were also no significant (p-value <= 0.10) trends in burned area, combustion, or emissions across the 

2001 - 2019 time series (Figure 2(a,b), Figure S37).  860 

 

4 Discussion 

4.1 Burned Area 

Our approach to mapping burned area across boreal North America has several advantages compared to 

past approaches. Although our burned area product is at 500 m resolution, the majority of pixels (81%) 865 

were mapped using 30 m Landsat imagery. Using finer-scale 30 m imagery allowed us to directly calibrate 

dNBR thresholds to site-level information and account for unburnable fractions of 500 m pixels. We also 



 34 

calibrated these dNBR thresholds for both 30 m Landsat and 500 m MODIS imagery to most effectively 

balance omissions and commissions. This allowed us to provide an unbiased estimate of burned area, which 

is a critical variable for understanding the impacts of fire on arctic-boreal ecosystems and climate.  870 

 

In theory, ABoVE-FED burned area would be expected to be higher than other available products because 

of its increased sensitivity to fire-induced spectral changes (compared to, for example, global MODIS 

burned area products, via our focus on splitting omissions and commissions) and our accounting for active 

fire acquisitions outside mapped fire polygons by the Alaskan and Canadian government agencies. 875 

Alternatively, ABoVE-FED accounts for sub-pixel heterogeneity of burnable land surfaces, which would 

otherwise result in lower burned area estimates compared to existing products. The net result is that 

ABoVE-FED burned area tends to be higher than other products, but not exclusively.  

 

We suggest future research efforts focused on burned area mapping in arctic-boreal environments could be 880 

conducted at resolutions finer than 500 m. Doing so will allow for improved understanding of fire spread 

and behavior patterns, and interactions between fire behavior and vegetation / land cover type. Finer-scale 

mapping should also allow for more accurate assessments of burned area by accounting for the presence of 

unburned patches of vegetation and water bodies, thereby facilitating increased understanding of the drivers 

of fire spread and effects on ecosystem processes (Hall et al., 2020). Fires have typically been mapped at 885 

landscape scales using 500 m MODIS imagery because of the frequent revisit times (multiple acquisitions 

per day). With a resolution of 30 m, Landsat imagery has been less commonly used for mapping burned 

area at landscape scales because the revisit time (16 days) is much longer, and because data coverage can 

be highly variable regionally and spatially depending on available downlink stations and cloud cover 

(Hilker et al., 2009; Ju and Masek, 2016; Figure S2), but this revisit frequency is improving with two 890 

Landsat satellites (Landsat 8 and 9) and two Sentinel satellites (2a and 2b) in orbit, which provide much 

more frequent overpasses (2-3 days when combined). 
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Similar to ABoVE-FED, approaches for mapping burned area using satellite imagery have typically relied 

on image differencing of vegetation indices, particularly dNBR (French et al., 2015). This requires pre- and 895 

post-fire image pairs, and thus compounds issues related to image availability at fine scales (30 m; (Chen 

et al., 2021).  Future burned area mapping at landscape scales could potentially be improved by using 

machine learning.  More specifically, deep learning approaches have been shown to be highly effective at 

mapping wildfires across different landscapes and vegetation types (Jain et al., 2020, Knopp et al., 2020). 

Convolutional Neural Networks, which use a spatial moving-window and therefore account for the spatial 900 

characteristics of fire scars (Jain et al., 2020) are particularly promising. Finally, developing burned area 

products in near real-time, as opposed to active fire-based assessments of hot pixel counts, would help 

scientists, fire managers, and society contextualize and potentially mitigate rapidly progressing fire seasons 

as they evolve. 

 905 

4.2 Combustion and Burn Depth Models  

Similar to previous studies (e.g., Veraverbeke et al., 2015), our aboveground combustion model performed 

substantially better than our belowground model. This is due primarily to the challenge of estimating 

belowground carbon consumption using remote sensing-based observations, which are more sensitive to 

aboveground properties. For example, the ABoVE-FED aboveground combustion model was heavily 910 

influenced by remotely-sensed properties such as pre-fire tree cover, fire severity (represented by dNBR), 

and vegetation wetness (represented by NDII), whereas the belowground model was strongly influenced 

by soil metrics, topography and solar radiation (Figure S16).  This occurred despite our model utilizing 

considerably more field observations (n = 515 for aboveground combustion and 769 for belowground) than 

past efforts in boreal North America (e.g., Dieleman et al., 2020 (n = 47); Veraverbeke et al., 2015 (n = 915 

126); Walker et al., 2018 (n = 211)), suggesting an inherently limited capacity to model belowground 

combustion using these techniques. Previous analysis of the field observations we used showed site-level 

drainage is the dominant driver of combustion in the ABoVE domain, due in part to the large contribution 

towards total combustion from belowground carbon stocks (Walker et al., 2018; 2020b). We therefore 
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suggest prioritizing the use of geospatial products that adequately capture drainage, and thereby its impact 920 

on belowground carbon stocks and vulnerability to combustion, for improving future estimates of carbon 

emissions from fire disturbance across boreal North America.  

 

Despite these limitations, our model performance is similar to past efforts.  For example, Veraverbeke et 

al., 2015 reported an aboveground combustion model fit of R2 = 0.53 and a belowground fit of R2 = 0.29 925 

for Alaska. Walker et al. (2018) implemented a 10-fold cross validation approach and reported a model fit 

of R2 = 0.26 for total (above and belowground) combustion in the Northwest Territories, Canada.  

Comparatively, we report a median R2 of 0.46 and 0.25 for ABoVE-FED aboveground and belowground 

combustion models, respectively. However, model performance was substantially higher in Dieleman et al. 

(2020), who reported a cross-validated R2 of 0.73 for total combustion in Saskatchewan. This is likely due 930 

to the higher relative contribution from aboveground combustion in the younger and more productive boreal 

forests of southern Canada, combined with high-quality provincial spatial data sets such as logging history 

(Dieleman et al., 2020). In all these cases, spatial patterns from ABoVE-FED are generally consistent with 

previous efforts (Figure 7), lending confidence to assessments of drivers and spatio-temporal patterns of 

combustion. 935 

 

Somewhat surprisingly, our models of burn depth performed better than both aboveground and 

belowground combustion models (cross-validated R2 = 0.53), which is considerably better than the R2 

model fit of 0.40 reported for the burn depth model in Veraverbeke (2015). This suggests substantial 

uncertainty in translating burn depth to carbon emissions in these boreal forests, which underscores the 940 

need for improved spatial layers of soil properties such as bulk density (Houle at al., 2017) and carbon 

fraction. The field and laboratory techniques used to calculate carbon emissions from burn depth also 

contain uncertainty, which is not always quantified. These errors are likely compounded when aggregating 

data across field campaigns, ecozones, and research groups, such as we did here. Nevertheless, burn depth 

is a critical fire severity property in its own right, with applications ranging from understanding the 945 
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changing boreal carbon cycle (Walker et al., 2019) to post-fire succession and vegetation patterns (Baltzer 

et al., 2021; Johnstone et al., 2010). Our results suggest geospatial statistical modeling is well-suited for 

capturing and extrapolating depth of burn in organic soils, at least within the ABoVE domain. 

 

Finally, we assessed the influence of spatial and sensor differences when building the combustion and burn 950 

depth models at 30 m but predicting them at 500 m. Overall, biases introduced by model nonlinearities, 

sub-grid heterogeneity, and vegetation fractions were found to be negligible (slope = 0.98 for aboveground 

and 0.97 for belowground combustion when regressing 500 m against aggregated 30 m predictions). This 

suggests that approaches to map fire carbon emissions at large scales using 500 m MODIS imagery are not 

fundamentally biased because of spatial scale. 955 

 

The machine learning models we employed allow insights into the drivers of both aboveground and 

belowground combustion. Partial dependence plots indicated that aboveground combustion tended to 

increase when tree cover and dNBR increased, and when relative humidity and vegetation water content 

(NDII) decreased (Figure S38).  These patterns are consistent with understanding of fire behavior and 960 

aboveground consumption dynamics, which are generally driven by aboveground fuels and climate 

conditions that facilitate fuel drying and fire spread (Beck et al., 2011; Rogers et al., 2014; Walker, 2020b). 

Alternatively, belowground combustion increased with higher silt (and lower sand) content, higher tree 

cover, and lower relative humidity (Figure S39). At moderate slopes (less than 20%), in which the majority 

of field observations were located, belowground combustion was higher in flatter landscapes. These 965 

relationships are consistent with current understanding about the drivers of soil organic matter accumulation 

and vulnerability to combustion (Walker et al., 2018, 2020b; Scholten et al., 2021). Drivers of burn depth 

were similar to those for belowground combustion, with the exception of higher burn depth occurring in 

areas with lower extreme maximum temperatures and Tasseled Cap Greenness (Figure S40). The former is 

likely related to deeper burn depths occurring in the northern portions of the ABoVE domain (Figure 5d), 970 
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where long-term maximum temperatures are generally lower. Tasseled Cap Greenness was assessed after 

a given fire, and can therefore be considered a metric of fire severity (low greenness = high severity). 

 

Total emissions from ABoVE-FED are relatively consistent with past efforts, including AKFED and 

GFED4s, but with some important differences. Total emissions and mean combustion (Figure S12) in 975 

Alaska were similar between ABoVE-FED and AKFED, which is expected given the similar field 

observations from Alaska used to develop these models. However, although AKFED was extended to the 

Yukon and Northwest Territories (Veraverbeke et al., 2017), it did not incorporate field observations from 

these regions. By utilizing 797 field plots across these provinces (albeit heavily dominated by the Northwest 

Territories), our results suggest AKFED tended to underestimate combustion in the Yukon and overestimate 980 

combustion in the Northwest Territories, especially during the large fire year of 2014. ABoVE-FED also 

includes many more predictor variables than AKFED, and is based on a different statistical model. We did 

not find large variations in mean combustion from year to year (Figure 2), which is likely related to both 

the tendency of the random forest models to regress to the mean (Figure S15) as well as relatively consistent 

observed mean combustion across large regions of the ABoVE domain (Walker et al., 2020a, c). 985 

 

GFED4s is a widely-used data source for global and regional burned area and fire emissions. Our results 

suggest GFED4s underestimates combustion across the ABoVE domain by roughly 1/3rd (32%; Figure 

S24; mean of 3.39 kg C m-2 in ABoVE-FED compared to 2.30 kg C m-2 in GFED4s), leading to 36% lower 

total emissions compared to ABoVE-FED (Figure S23). This is consistent with previous regional studies 990 

noting a consistent underestimation for GFED4s emissions in Alaska (Veraverbeke et al., 2015) and the 

Northwest Territories (Walker et al., 2018). This result has important implications for quantifying and 

understanding the role of arctic-boreal fires on the global carbon cycle and climate. Regional- to 

continental-scale upscaling efforts such as ABoVE-FED, including the underlying field observation 
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database (Walker et al., 2020a), can help inform further versions of global fire models and thereby improve 995 

our quantification and understanding of the role of wildfire on the global carbon cycle. 

 

In contrast to AKFED and GFED4s, fire carbon emissions in FireMIP were an order of magnitude lower 

(94%) than ABoVE-FED (Figure S13b).  This is likely due to the fact that most models in FireMIP only 

combust aboveground vegetation, whereas combustion of belowground soil organic matter constitutes the 1000 

majority of emissions in boreal Alaska and Canada. This underscores the importance of developing 

algorithms that accumulate and burn soil organic matter within global fire models, which is important for 

both direct fire emissions as well as post-fire permafrost thaw and degradation (Genet et al., 2013; Jafarov 

et al., 2013; Natali et al., 2021; Treharne et al., 2022). 

 1005 

ABoVE-FED confirms the high interannual variability of fire carbon emissions in the ABoVE domain, 

including the large fire years of 2004 in Alaska and the Yukon Territory, 2005 in Alaska, 2010 in 

Saskatchewan, 2014 in the Northwest Territories, and 2015 in Alaska and Saskatchewan. We also found 

general agreement with previous work (Turetsky et al., 2011) that large fire years and later seasonal fires 

facilitate deeper burning and higher belowground carbon emissions, including the phenomenon that burn 1010 

timing has a stronger influence on severity in low fire years (i.e., extreme fire years result in high severity 

regardless of timing). However, these relationships varied depending on region and analysis technique, and 

were often confounded by site-level factors and fire weather at the time of burn. Overall, however, this 

underscores the influence that climate change (warming, drying, and longer fire seasons) has on boreal fire 

severity. 1015 

 

Consistent with previous studies (Rogers et al., 2014; Veraverbeke et al., 2015; Walker et al., 2018; 

Dieleman et al., 2020), ABoVE-FED includes high uncertainty in combustion at the pixel-level (2.86 kg C 

m-2). Much of this uncertainty likely arises from difficulty in predicting large combustion values, 

particularly from belowground sources (Figure S15b). This suggests ABoVE-FED is underpredicting 1020 
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emissions coming from the most severe fire events between 2001-2019. We attempted to correct for this 

bias in a number of ways, including testing a variety of models (Figure 6), tuning model parameters, 

assigning higher weights to the highest combustion values, and applying the Synthetic Minority 

Oversampling Technique (SMOTE; Chawla et al., 2002) to synthetically create more samples with higher 

combustion values. Ultimately, none of these approaches were able to correct for the low bias at high 1025 

combustion levels without sacrificing performance for low combustion values. More field observations of 

high combustion combined with improved predictor variables (particularly drainage) may improve future 

model performance. Also consistent with previous studies, these pixel-level uncertainties were dampened 

through spatial averaging, such that domain-wide mean combustion had comparatively lower uncertainty 

(3.13 +/- 1.17 kg C m-2). 1030 

 

Conclusions 

Here we used 30 m Landsat and 500 m MODIS imagery to map burned area across Alaska and Canada, 

and map fire carbon emissions across the ABoVE domain over a 19-year period between 2001-2019.  We 

utilized a recent field database of combustion observations across the ABoVE domain (Walker et al., 1035 

2020a), which represents the largest of its kind for any biome on Earth. We found burned area and total 

emissions are highly variable by year, averaging 2.37 Mha of burned area and 79.26 +/- 28.65 Tg C emitted 

per year across the ABoVE domain (2.87 Mha of burned area across all of Alaska and Canada), with a 

mean combustion level of 3.13 +/- 1.20 kg C m-2. When compared to previous products we report more 

burned area than GFED4s and the MODIS MC64A1 Collection 5 and 6 products. We report similar carbon 1040 

emissions to AKFED, but more emissions than both GFED4s and FireMIP. ABoVE-FED can be used to 

understand patterns of fire behavior and effects across central and western boreal North America, and to 

continue monitoring intensifying fire regimes in boreal forests.  

 

 1045 
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