Preprints
https://doi.org/10.5194/egusphere-2022-194
https://doi.org/10.5194/egusphere-2022-194
19 May 2022
 | 19 May 2022

Potential bioavailability of pyrogenic organic matter resembles natural dissolved organic matter pools

Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa Garayburu-Caruso, James Stegen, Kevin D. Bladon, and Allison Myers-Pigg

Abstract. Pyrogenic materials generated by wildfires are negatively impacting many aquatic ecosystems. At least ~10 % of dissolved organic matter (DOM) pools may be comprised of pyrogenic organic matter (PyOM) that is generally considered to be more refractory than DOM from other sources. However, there has been no systematic evaluation of bioavailability across a full spectrum of PyOM chemistries. We assessed the potential bioavailability of PyOM in relation to measured and globally ubiquitous DOM compounds using a substrate-explicit model to predict the energy content, metabolic efficiency, and aerobic decomposition of representative PyOM compounds. Overall, we found similar potential bioavailability between PyOM and sediment and surface water DOM. Predicted thermodynamics and carbon use efficiencies of PyOM and DOM were statistically indistinguishable. Within PyOM, phenols and black carbon (BC, defined by Wagner et al. (2017)) had lower metabolic efficiency than other PyOM and DOM compounds, and oxygen limitation had less impact on BC metabolism than on other PyOM classes. Our work supports the recent paradigm shift where PyOM bioavailability may be more comparable to natural organic matter than previously thought, highlighting its potential role in global C emissions and providing a basis for targeted laboratory investigations into the bioavailability of various PyOM chemistries.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

18 Aug 2023
| BG Letters
| Highlight paper
Potential bioavailability of representative pyrogenic organic matter compounds in comparison to natural dissolved organic matter pools
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023,https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary Co-editor-in-chief
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Intensifying wildfire regimes in many parts of the world are increasing the production of...
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact...
Share