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SUPPORTING INFORMATION: EXTENDED MATERIALS AND METHODS  

Representative Pyrogenic Organic Matter (PyOM) Description 

To assess the bioavailability of PyOM, we searched primary literature for representative 

compounds of the PyOM continuum. Specifically, we targeted previously characterized organic 

compounds from field and laboratory burns of various fuel types representing a range of 

moisture, temperature, and oxygen conditions (Table S1). The chosen compounds focused on 

biomass burning alteration products which are often used to characterize PyOM in different 

environmental media, such as aerosols, soils, and waters. This included compounds such as 

theoretical BC compounds [defined here as condensed aromatic core structures polysubstituted 

with O-containing functionalities (Wagner et al., 2017)], anhydrosugars, and polycyclic aromatic 

hydrocarbons (PAHs). The list also included compounds created and/or transformed from 

biomass burning, such as those derived from biopolymers like lignin (e.g., methoxyphenols), 

waxes (e.g., n-alkenes from thermal dehydration of n-alkanols), and resins (e.g., thermally 

oxidized diterpenoids)(Oros and Simoneit, 2001a, b). In total, our literature search for PyOM 

chemistries yielded 389 compounds with 207 unique chemical formulae from 12 primary 

literature sources (Table S1).  

 

Dissolved Organic Matter (DOM) Description 

Global surface water and sediment DOM pool composition was measured with Fourier 

transform ion cyclotron mass spectrometer (FTICR-MS) in order to be able to detected 

thousands of OM compounds per sample, thereby providing a high-resolution perspective on 

DOM, and the data used here are described in more detail by Garayburu-Caruso et al. (2020a).  
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Briefly, the WHONDRS consortium collected surface waters and sediments from 97 river 

corridors in 8 countries within a 6-week period, from 29 July to 19 September. At each location, 

collaborators selected sampling sites within 100 m of a station that measured river discharge, 

height, or pressure. Surface water was collected in triplicate using a 60 mL syringe and then 

filtered through a 0.22 μm sterivex filter (EMD Millipore) into a 40 mL glass vial (I-Chem 

amber VOA glass vials; ThermoFisher, pre-acidified with 10 µL of 85% phosphoric acid). 

Subsequently, 125 mL of surface sediments (1–3 cm depth) were sampled from a ~1 m2 area at 

each of three depositional zone with a stainless steel scoop, making sure the sediments were 

saturated upon collection. All samples were shipped to Pacific Northwest National Laboratory on 

blue ice within 24 h of collection. Surface water samples were immediately frozen at −20 °C 

upon receiving. Sediments were sieved to <2 mm, subsampled into proteomic friendly tubes 

(Genesee Scientific), flash frozen in liquid nitrogen and then stored at -80 until FTICR-MS 

analysis. Note that in the methods provided by Garayburu-Caruso et al. (2020a) there is an error 

in the description of the sediment preservation prior to FTICR-MS analysis. Corrected 

preservation methods are used in this manuscript.  

Prior to FTICR-MS analysis, sediment organic matter was extracted in proteomic friendly 

tubes (Genesee Scientific) with a 1:2 ratio of sediment to water (5 g of sediment to 10 mL of 

milli-Q water), continuously shaken in the dark at 375 rpm and 21 °C for 2 h. The tubes were 

centrifuged at 6000 rcf and 21 °C for 5 min. The supernatant was collected and filtered through 

0.22 μm polyethersulfone membrane filter (Millipore Sterivex, USA) into borosilicate glass 

vials. Surface water and sediment extracts were normalized to a standardized NPOC 

concentration of 1.5 mg C L−1. Diluted samples were acidified to pH 2 with 85% phosphoric 

acid and extracted with PPL cartridges (Bond Elut), following Dittmar et al.(Dittmar et al., 2008) 



 3 

A 12 Tesla (12 T) Bruker SolariX FTICR-MS (Bruker, SolariX, Billerica, MA, USA) 

located at the Environmental Molecular Sciences Laboratory in Richland, WA, was used to 

collect ultrahigh-resolution mass spectra of surface water and sediment OM pools. Resolution 

was 220 K at 481.185 m/z. The FTICR-MS was outfitted with a standard electrospray ionization 

(ESI) source, and data were acquired in negative mode with the voltage set to +4.2 kV. The 

instrument was externally calibrated weekly to a mass accuracy of <0.1 ppm; in addition, the 

instrument settings were optimized by tuning on a Suwannee River Fulvic Acid (SRFA) 

standard. Data were collected with an ion accumulation of 0.05 s for surface water and 0.1 or 0.2 

s for sediment from 100–900 m/z at 4 M. One hundred forty-four scans were co-added for each 

sample and internally calibrated using an OM homologous series separated by 14 Da (–CH2 

groups). The mass measurement accuracy was typically within 1 ppm for singly charged ions 

across a broad m/z range (100 m/z–900 m/z). BrukerDaltonik Data Analysis (version 4.2) was 

used to convert raw spectra to a list of m/z values by applying the FTMS peak picker module 

with a signal-to-noise ratio (S/N) threshold set to 7 and absolute intensity threshold to the default 

value of 100. We aligned peaks (0.5 ppm threshold) and assigned chemical formulas using 

Formularity.(Tolić et al., 2017) The Compound Identification Algorithm in Formularity was used 

with the following criteria: S/N > 7 and mass measurement error <0.5 ppm. This algorithm takes 

into consideration the presence of C, H, O, N, S, and P and excludes other elements. 

The R package “ftmsRanalysis” (Bramer et al., 2020) was used to (1) remove peaks 

outside of a high confidence m/z range (200 m/z–900 m/z) and/or with a 13C isotopic signature 

and (2) to predict chemical class assignments for each DOM molecule using oxygen-to-carbon 

and hydrogen-to-carbon ratios (i.e., Van Krevelen classes, Kim et al., 2004). To yield a dataset of 
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globally ubiquitous DOM, surface water and sediment DOM pools were filtered to compounds 

occurring in 95% of samples.  

Although FTICR-MS has the advantage of allowing for the detection of thousands of 

DOM molecules, one drawback is that formula assignments and follow-on chemical class 

inferences are computationally assessed rather than referenced against known standards. Because 

of this, chemical class inferences for DOM molecules in this study are limited to a higher level of 

molecular taxoDOMy than PyOM molecules that were extracted from primary literature and had 

known compound identifications. This results in a discrepancy between compound classes 

presented in the main text figures for DOM and PyOM molecules. We provide finer 

classifications for PyOM compounds (e.g., phenols), many of which fall into the broader groups 

depicted for DOM pools (e.g., lipids), to provide the maximum information we are able to infer 

from each data type. 

 

Substrate-Explicit Model Description 

We used a substrate-explicit modelling framework developed by Song et al.(Song et al., 

2020) to characterize the bioavailability of each compound and predict its rate of decomposition. 

The model is compound-specific and environment-agnostic (with excepted specifications of 1 

bar atmospheric pressure, pH 7, and 25oC), meaning that it yields predictions for each input 

compound (as opposed to as a pool of compounds) and does not consider environmental 

conditions such as minerology or redox potential. Calculation of thermodynamic functions at 

pH=7 is important because aqueous species at pH=0 do not necessarily represent the state of 

biological cells. Correction of Gibbs free energy for any given reaction (r) from pH=0 (
0

rG ) to 

7 ( rG ) can be made using the following equation: 
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where R is the universal gas constant [= 0.008314 kJ/(K ⋅ mol)], T is temperature in Kelvin, 
H

y +  

is the stoichiometric coefficient of H+ in a given reaction. With this adjustment, the sign of Gibbs 

free energy for an electron donor half reaction is often changed from plus to minus.  

Three sets of organic molecules were used as model inputs: global (1) surface water 

DOM and (2) sediment DOM pools (Garayburu-Caruso et al., 2020a); and (3) literature-derived 

PyOM compounds as described above. Inputs to the model were unique molecular formulae, 

grouped in subsequent analysis by their corresponding compound classes (Table S1). If one 

molecular formula was represented by several PyOM compounds (e.g., C10H16O2, which 

corresponds to the sesquiterpenoid cis-Thujan-10-oic acid and 3-, 4- substituted methylcatechol 

phenols), we assigned multiple compound classes to that molecular formula.  

Briefly, the substrate-explicit model uses the elemental stoichiometry of organic 

molecules, based on molecular formulae, to predict the number of catabolic reactions that must 

occur to provide the energy required for the synthesis of a unit carbon mole of biomass. This 

quantity is described by the parameter lambda () in which lower  values denote more efficient 

energetics of catabolism in producing biomass through anabolism. As described above, the 

model also predicts the Gibbs free energy of C oxidation (GCox), under standard conditions with 

a modification to pH 7 adjusted from LaRowe and Van Cappellen (2011) by Song et al. (2020), 

as well as C use efficiency (CUE) as defined by Saifuddin et al. (2019) Lower GCox denotes 

higher thermodynamic favorability in an electron donor half reaction associated with organic 

matter, and higher CUE reflects more C assimilated into biomass per unit C respired. We also 

predicted the rate of aerobic metabolism (as oxygen consumed per mol-C biomass produced) 

under three scenarios commonly observed in aquatic ecosystems: (a) C-limitation, (b) oxygen 
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(O2) limitation, and (c) both C and O2-limitation. For more details of the substrate-explicit 

modelling approach used, please see Song et al. (2020) Each metric (, GCox, CUE, metabolic 

rates) denotes a different aspect of bioavailability. Though the relative magnitude of the metrics 

in comparison to each other will vary based on the specific stoichiometry of a molecule, highly 

bioavailable compounds are indicated by low  and GCox coinciding with high CUE and 

metabolic rates. More details on Song et al.’s substrate-explicit model are below, and we point 

the reader to the original publication for the full methodology. 

The substrate-explicit model used here leverages two microbial parameters [maximal 

growth rate (μmax) and harvest volume (Vh) (i.e., the volume that a microbe can access for 

harvesting energy)] to predict OM-specific oxidative degradation pathways and reaction rates 

based on the thermodynamic properties of OM pools. The remaining reaction kinetics are 

formulated from the chemical formula of OM, based on thermodynamic principles. The model is 

comprised of two major components (1) derivation of stoichiometric equations for catabolic, 

anabolic, and metabolic reactions by combining a set of standard thermodynamic analyses 

(Mccarty, 2007; Larowe and Van Cappellen, 2011; Kleerebezem and Van Loosdrecht, 2010) and 

(2) formulation of kinetic equations for the final oxidative degradation reaction of OC using a 

relatively recent thermodynamic theory for microbial growth.(Desmond-Le Quéméner and 

Bouchez, 2014) 

For (1), we derived stoichiometric equations following the standard approaches outlined 

in the literature (Kleerebezem and Van Loosdrecht, 2010; Rittmann and Mccarty, 2001). Step-

by-step instructions are available in Song et al. For each OM compound, we derived a 

stoichiometric equation for oxidative degradation of OC by combining catabolic (i.e., all 

processes for obtaining energy through substrate oxidation or other means) and anabolic (i.e., 
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synthesis of biomass using the energy provided from catabolism) reactions to generate a full 

metabolic process. To do so, we combined to common approaches to generate metabolic 

reactions based on stoichiometric equations––the dissipation method (Hoijnen et al., 1992; 

Heijnen and Van Dijken, 1993) and the thermodynamic electron equivalents model 

(TEEM)(Mccarty, 2007). The dissipation method provides a basic framework through the 

determination of the stoichiometric coefficient vector for metabolic reaction by coupling the 

catabolic and anabolic reactions based on the parameter λ, which in turn was calculated by 

TEEM along with dissipation energy using information on C source and its conversion into 

biomass. In all cases, we specified ammonium as the nitrogen source.  

To derive kinetic equations in step (2), we use thermodynamic theory by Desmond-Le 

Quemener and Bouchez (2014) to formulate microbial growth kinetics from stoichiometric 

equations in step (1). In the case of oxidative degradation of OC, the microbial growth on the ith 

OC (OCi) can be represented by 

      (Eq. 2) 

where μmax is the maximal specific growth rate, Vh is the volume that a microbe can access for 

harvesting energy from the environment (thus termed harvest volume), ,OC iy  and 
2Oy are the 

stoichiometric coefficients of OC and O2 in the metabolic reaction associated with oxidative 

degradation of OCi, and ,OC iy  and 
2Oy  denote their absolution values.  

Importantly, the model utilizes molecular formulae to predict energetic content, 

metabolic efficiency, and rates of aerobic metabolism, and it does not account for structural 

components of organic molecules (e.g., double bonds, folding patterns, cross-linkages). It also is 
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agnostic of environmental parameters known to impact metabolic rates, such as temperature, 

mineral sorption, and microbial community composition. This simplified approach enables 

flexibility in application to high-throughput mass spectrometry techniques that yield chemical 

formulae but not structural information (e.g., Fourier Transform Ion Cyclotron Resonance Mass 

Spectrometry, FTICR-MS) and supports hypothesis generation regarding in situ molecular 

dynamics that can be directly measured with targeted laboratory experiments.  Despite its 

limitations, the substrate-explicit model used here has proven useful in linking DOM 

composition to aerobic metabolism in natural environments (Song et al., 2020; Graham et al., 

2017; Garayburu-Caruso et al., 2020b), and its structure is consistent with Harvey et al.(Harvey 

et al., 2016) who argued for the importance of thermodynamic estimates of PyOM bioavailability 

that underlie this model. It was chosen to allow for comparison of PyOM to a comprehensive 

assessment of global aquatic DOM pool composition (Garayburu-Caruso et al., 2020a).  

 

Statistics and Data Availability 

We compared modelling outputs from representative PyOM to outputs of ubiquitous 

DOM pools to infer relative bioavailability using ANOVA and Tukey HSD statistical tests with 

R software. All model outputs are available in Tables S2-S4. Code is available at: 

https://github.com/hyunseobsong/lambda. Data describing DOM pool chemistry are published as 

a data package (Goldman et al., 2020) (available at: doi:10.15485/1729719) and are discussed in 

more detail by Garayburu-Caruso et al. (2020a). 

  

https://github.com/hyunseobsong/lambda
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SUPPORTING INFORMATION: FIGURES AND TABLES 

 

Figure S1. Carbon use efficiency (CUE) of PyOM, grouped by known chemical properties. High 

CUE values indicate more C incorporated into biomass vs. respired per unit C.  Median values 

are denoted by a bar, the lower and upper hinges correspond to the first and third quartiles (the 

25th and 75th percentiles), and the upper and lower whiskers extend from the hinge to the 

largest/smallest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile 

range, or distance between the first and third quartiles), and data beyond the end of the whiskers 

are plotted individually. 
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Figure S2. Predicted metabolism of ubiquitous (a–c) surface water DOM, (d–f) sediment DOM, 

and (g–i) PyOM molecules, grouped by inferred chemical class or known chemical properties. 

The first column shows predicted rates of aerobic metabolism without any elemental limitations. 
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C-limited and O2-limited scenarios are show in the second and third columns, respectively. 

Median values are denoted by a bar, the lower and upper hinges correspond to the first and third 

quartiles (the 25th and 75th percentiles), and the upper and lower whiskers extend from the hinge 

to the largest/smallest value no further than 1.5 * IQR from the hinge (where IQR is the inter-

quartile range, or distance between the first and third quartiles), and data beyond the end of the 

whiskers are plotted individually. 
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Table S1. PyOM molecules and chemical properties. 

 

Table S2. Substrate-explicit model outputs for each PyOM compound. 

 

Table S3. Substrate-explicit model outputs for each sediment DOM compound. 

 

Table S4. Substrate-explicit model outputs for each surface water DOM compound. 
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Robinson, E. W., and Paša-Tolić, L.: Formularity: software for automated formula assignment of 
natural and other organic matter from ultrahigh-resolution mass spectra, Analytical chemistry, 
89, 12659-12665, 2017. 
Wagner, S., Ding, Y., and Jaffé, R.: A new perspective on the apparent solubility of dissolved 
black carbon, Frontiers in Earth Science, 5, 75, 2017. 
 

https://doi.org/10.3389/fmicb.2020.531756

